摘要
应用电磁波反射理论,研究了3维微波腔体本征频率的分布特征。在电大条件下,矢量电磁场本征值的平均密度函数满足Wely公式。基于波动混沌理论,推导出了规则腔体与复杂腔体本征值平方归一化相邻间距分别服从Poisson分布和Wigner分布。对于满足Wigner分布的随机变量,给出了高斯正交系综随机矩阵的统计模拟计算方法。应用数值模拟计算结果初步验证了理论分析结果。
The eigenfrequencies distribution functions were studied by the theory of electromagnetic reflection for three-dimensional microwave cavities.For the electrical-large cavity,its eigenvalue,s average density function accords with the Wely formula.According to the theory of wave chaos,the normalized nearest-neighbor spacing distributions of the square of eigenvalue satisfy Poisson distribution and Wigner distribution,respectively,for regular and complex cavities.Furthermore,the statistical simulation method of Wigner distribution was established with random matrix of Gaussian orthogonal ensemble.The numerical results are consistent with theoretical analyses.
出处
《强激光与粒子束》
EI
CAS
CSCD
北大核心
2011年第12期3367-3371,共5页
High Power Laser and Particle Beams
基金
国家自然科学基金项目(60971080)