期刊文献+

3维微波腔体本征频率的统计分析 被引量:5

Statistical analysis of eigenfrequencies for three-dimensional mcrowave cavities
下载PDF
导出
摘要 应用电磁波反射理论,研究了3维微波腔体本征频率的分布特征。在电大条件下,矢量电磁场本征值的平均密度函数满足Wely公式。基于波动混沌理论,推导出了规则腔体与复杂腔体本征值平方归一化相邻间距分别服从Poisson分布和Wigner分布。对于满足Wigner分布的随机变量,给出了高斯正交系综随机矩阵的统计模拟计算方法。应用数值模拟计算结果初步验证了理论分析结果。 The eigenfrequencies distribution functions were studied by the theory of electromagnetic reflection for three-dimensional microwave cavities.For the electrical-large cavity,its eigenvalue,s average density function accords with the Wely formula.According to the theory of wave chaos,the normalized nearest-neighbor spacing distributions of the square of eigenvalue satisfy Poisson distribution and Wigner distribution,respectively,for regular and complex cavities.Furthermore,the statistical simulation method of Wigner distribution was established with random matrix of Gaussian orthogonal ensemble.The numerical results are consistent with theoretical analyses.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2011年第12期3367-3371,共5页 High Power Laser and Particle Beams
基金 国家自然科学基金项目(60971080)
关键词 本征频率 微波混沌 WIGNER分布 随机矩阵 eigenfrequency microwave chaos Wigner distribution random matrix
  • 相关文献

参考文献19

  • 1Warne L K, Lee K S H, Hudson H G, et al. Statistical properties of linear antenna impedance in an electrically large cavity[J]. IEEE Trans on Antennas and Propagation, 2003, 51(5) : 978- 992.
  • 2Zheng X, Antonsen T M Jr, Ott E. Statistics of impedance and scattering matrices in chaotic microwave cavities: single channel case[J]. Electromagnetics, 2006, 26(1) : 3- 35.
  • 3Ladbury J M, Lehman T H, Koepke G H. Coupling to devices in electrically large cavities, or why classical EMC evaluation techniques are becoming obsolete[C]//IEEE International Symposium on Electromagnetic Compatibility. 2002, 2: 848-655.
  • 4Hemmady S D. A wave-chaotic approach to predicting and measuring electromagnetic field quantities in complicated enclosures[D]. Washington: University of Maryland, 2006.
  • 5闫二艳,马弘舸,孟凡宝.微波腔内波混沌散射的初步研究[J].强激光与粒子束,2009,21(3):425-428. 被引量:8
  • 6陆希成,王建国,韩峰,刘钰.复杂腔体本征电磁场空间分布的统计方法[J].强激光与粒子束,2011,23(8):2167-2173. 被引量:11
  • 7McDonald S W, Kaufman A N. Wave chaos in the stadium statistical properties of short-wave solutions of the Helmholtz equation [J]. Phys RevA, 1988, 37(8): 3067- 3086.
  • 8Stockmann H J. Chaos in microwave resonators, seminaire poincare IX[J/OL], 2010. http://www, bourbaphy. fr/stoeckmann. PDf.
  • 9Bunimovich L A. Many-dimensional nowhere dispersing billiards with chaotic behavior[J]. Physica D, 1988, 33(1/3): 58-64.
  • 10Bunimovich L A, Casati G, Guarneri I. Chaotic focusing billiards in higher dimensions[J]. Phys Rev Lett, 1996, 77(14) : 2941-2943.

二级参考文献27

  • 1陈修桥,胡以华,张建华,黄友锐,何丽.计算机机箱的电磁脉冲耦合模拟仿真[J].系统仿真学报,2004,16(12):2786-2788. 被引量:24
  • 2刘长军,黄卡玛,闫丽萍,蒲天乐,张文赋.电磁辐射作用于计算机主板的模拟及效应评估[J].强激光与粒子束,2006,18(5):847-852. 被引量:16
  • 3蔡佳星,仇善良,李永平,韩正甫.异型微腔本征模式分析[J].量子电子学报,2007,24(1):27-31. 被引量:1
  • 4蔡鑫伦,黄德修,张新亮.基于全矢量模式匹配法的三维弯曲波导本征模式计算[J].物理学报,2007,56(4):2268-2274. 被引量:2
  • 5Mehta M L . Random matrices[M]. San Diego:Academic Press, 1991.
  • 6Hemmady S, Zheng X, Hart J, et al. Universal properties of two-port scattering, impedance, and admittance matrices of wave-chaotic systems[J]. Phys Rev E , 2006, 74: 036213.
  • 7Zheng X, Antonsen T M, Ott E. Statistics of impedance and scattering matrices in chaotic microwave cavities: single channel case[J]. Electrornagnetics, 2006, 26 : 3-35.
  • 8Hemmady S, Zheng X, Antonsen T M, et al. Universal statistics of the scattering coefficient of chaotic microwave cavities[J]. Phys Rev E, 2005, 71:056215
  • 9Zheng X, Antonsen T M, Ott E. Statistics of impedance and scattering matrices in chaotic microwave cavities with multiple ports[J]. Electromagnetics, 2006, 26:37-55.
  • 10Muttalib K A , Ismail M E H. Impact of localization on Dyson's circular ensemble[J/OL], http://arxiv.org/abs/cond-mat/951005v1.

共引文献15

同被引文献36

  • 1戴大富.高功率微波的发展与现状[J].真空电子技术,2004,17(5):18-24. 被引量:17
  • 2柳孝图.体育馆声学设计探讨[J].应用声学,1996,15(1):20-25. 被引量:4
  • 3Holland R, John R S. Statistical electromagneties[R]. AFRL-DE-PS-TR-1998-1025, Air Force Research Laboratory, Kirtland Air Force Base.
  • 4Zheng X, Antonsen T M, Ott E. Statistics of impedance and scattering matrices in chaotic microwave cavities: single channel case[J]. Elec- tromagT:etics, 2006, 26: 3-35.
  • 5Hemmady S, Zheng X, Ott E, et aI. Universal impedance fluctuations in wave chaotic systems[J]. Phys Rev Lett, 2005, 94: 014102.
  • 6Hemmady S. Zheng X, Antonsen T M, et al. Universal statistics of the scattering coefficient of chaotic microwave cavities[J]. Phys Rev E, 2005, 71:056215.
  • 7Zheng X. Anmnsen T M, Ott E. Statistics of impedance and scattering matrices in chaotic microwave cavities with multiple ports[J]. Elec- tromagwtics. 2006; 26:37 -55.
  • 8Hemmady S. A wave-chaotic approach to predicting and measuring electromagnetic quantities in complicated enclosures[D]. Maryland: Uni- versity of Maryland, 2006.
  • 9Hemmady S, Zheng X, Antonsen T M, et al. Aspects of the scattering and impedance properties of chaotic microwave cavities[J]. Acta Physica Polonica A, 2006 ; 109 (1) : 65-71.
  • 10Zheng X, Hemmady S, Antonsen T M, et al. Characterization of fluctuations of impedance and scattering matrices in wave chaotic scattering [J]. PhysRevE, 2006, 73: 046208.

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部