期刊文献+

f-拉普拉斯算子正调和函数的梯度估计 被引量:1

Gradient Estimates for Positive Harmonic Functions of f-Laplacian Operator
下载PDF
导出
摘要 设M是m维完备的黎曼流形.在∞-Bakry-Emery Ricci曲率和Ricci曲率都有下界的条件下,Chen得到了f-拉普拉斯算子正调和函数的一类梯度估计.仅在∞-Bakry-Emery Ricci曲率有下界的条件下,得到了与Chen类似的梯度估计. Let M be a m-dimensional complete Riemannian manifold.Under the assumption that both ∞-Bakry-Emery Ricci curvature and Ricci curvature are bounded from below,Chen has obtained a gradient estimate for positive harmonic functions of f-Laplacian operator.The aim of this paper is to derive the similar estimate to Chen's under the assumption that ∞-Bakry-Emery Ricci curvature is bounded with the lower line.
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第5期10-12,共3页 Journal of Henan Normal University(Natural Science Edition)
基金 国家自然科学基金(11001076) 河南省自然科学基金(092300410143 2009A110010 2010A110008)
关键词 梯度估计 f-拉普拉斯 ∞-Bakry-Emery RICCI曲率 gradient estimate f-Laplacian operator ∞-Bakry-Emery Ricci curvature
  • 相关文献

参考文献1

二级参考文献1

共引文献2

同被引文献13

  • 1Li P,Yau S T.On the parabolic kernel of the Schrodinger operator[J].Acta Math,1986,156(1):153-201.
  • 2Hamilton R S.The Harnack estimate for the Ricci flow[J].J Differential Geom,1993,37(1):225-243.
  • 3Hamilton R S.Harnack estimate for the mean curvature flow[J].J Differential Geom,1995,41(1):215-226.
  • 4Cao X.Differential Harnack estimates for backward heat equations with potentials under the Ricci flow[J].J Funct Anal,2008,255(4):1024-1038.
  • 5Cao X,Hamilton R S.Differential Harnack estimates for timedependent heat equations with potentials[J].Geom Funct Anal,2009,19(4):989-1000.
  • 6Liu S P.Gradient estimates for solutions of the heat equation underRicci flow[J].Pacific J Math,2009,243(1):165-180.
  • 7Sun J.Gradient estimates for positive solutions of the heat equation under geometric flow[J].Pacific J Math,2011,253(2):489-510.
  • 8Bailesteanu M,Cao X D,Pulemotov A.Gradient estimates for the heat equation under the Ricci flow[J].J Funct Anal,2010,258(10):3517-3542.
  • 9Huang G Y,Ma B Q.Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds[J].Arch Math(Basel),2010,94(3):265-275.
  • 10Huang G Y,Huang Z J,Li H.Gradient estimates and differential Harnack inequalities for a nonlinear parabolic equation on Riemannian manifolds[J].Ann Glob Anal Geom,2013,43(3):209-232.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部