期刊文献+

具有Allee效应与脉冲扩散的捕食系统的动力学分析 被引量:1

Dynamics Analysis of a Pest Management System with Allee Effect and Impulsive Eiffusion
下载PDF
导出
摘要 提出了一类被捕食者具有Allee效应,捕食者具有脉冲扩散的微分系统.利用脉冲微分方程的比较原理和相关理论分别讨论了系统的被捕食者-灭绝周期解的存在性、局部稳定性及全局吸引性. A predator-prey system with Allee effect on prey and impulsive dispersion on predator is investigated.By using the comparision principle and relevance theories of implusive differential equations,the paper has discussed the existence,asymptotically stable and globally attractive of prey-extinction positive periodic solution of the system.
作者 刘霞 刘艳伟
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第5期24-27,共4页 Journal of Henan Normal University(Natural Science Edition)
基金 河南省教育厅自然科学基金项目(2010A520050) 河南师范大学博士科研启动费支持课题(1001)
关键词 全局吸引 脉冲扩散 ALLEE效应 被捕食者控制 global attraction impulsive diffusion allee effect pest management
  • 相关文献

参考文献6

  • 1Aguirre P, Gonzhlez-Olivares E, Saez E. Two limit cycles in a Leslie-Gower predator-prey model with additive Allee effect [J]. Nonlinear Anah RWA, 2009,10 : 1401-1416.
  • 2Berec L, Angulo E, Courchamp F. Multiple Allee effects and population management[J]. Trends Ecol Evol,2007,22:185-191.
  • 3董玲珍,陈兰荪,孙丽华.OPTIMAL HARVESTING POLICY FOR INSHORE-OFFSHORE FISHERY MODEL WITH IMPULSIVE DIFFUSION[J].Acta Mathematica Scientia,2007,27(2):405-412. 被引量:7
  • 4Hui J, Chen L. A single species model with impulsive diffusion [J]. Acta Math Appl Sin English Series, 2005,21(1) :43-48.
  • 5Nie L, Teng Z, Hu L, et al. Qualitative analysis of a modified Leslie-Gower and Holling-type I predator-prey model with state dependent impulsive effects [J]. Nonlinear Anal: RWA,2010,11:1364-1373.
  • 6Guo H , Song X. An impulsive predator-prey system with modified Leslie-Gower and Holling type II schemes[J]. Chaos Solitons and Fractals,2008,36 :1320-1331.

二级参考文献10

  • 1Zhang Xiaoying, Shuai Zhisheng, Wang Ke. Optimal impulsive harvesting policy for single population.Nonl Anal: Real World Application, 2003, 69(4): 639-651
  • 2Pradhan T, Chandhari K S. Bioeconomised modelling of selective harvesting in an inshore-offshore fishery.Differential Equations and Dynamical Systems, 1999, 7(3): 305-320
  • 3Bainov D, Simeonov P. Impulsive differential equations: periodic solutions and applications. Pitman Monographs and Surveys in Pure and Applied Mathematics, 1993, 66
  • 4Lakshmikantham V, Bainov D D, Simeonov P S. Theory of Impulsive Differential Equations. Singapore:World Scientific, 1989
  • 5Ballinger G, Liu X. Permanence of population growth models with impulsive effects. Math Comput Modelling, 1997, 26:59-72
  • 6Shulgin B, Stone L, Agur Z. Pulse vaccination strategy in the SIR epidemic model. Bull Math Biol, 1998,60:1-26
  • 7Lakmeche A, Arino O. Bifurcation of non-trivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment. Dynamics of Continuous, Discrete and Impulsive Systems, 2000, 7:265-278
  • 8Smith H L. Cooperative systems of differential equations with concave nonlinearities. Nonlinear Anal TMA, 1986, 10: 1037-1052
  • 9Clark C W. Mathematical Bioeconomics: The Optimal Management of Renewable Resources. New York:John Wiley & Sons, 1976
  • 10Fan M, Wang K. Optimal harvesting policy for single population with periodic coefficient. Math Biosci,1998, 152:165-177

共引文献6

同被引文献5

  • 1Gonzlez-Olivares E.Dynamical complexities in the Leslie-Gower predator-prey model as consequences of the Allee effect on prey[J].Ap-plied Mathematical Modelling,2011,35:366-381.
  • 2Berec L,Angulo E,Courchamp F.Multiple Allee effects and population management[J].Trends Ecol Evol,2007,22:185--91.
  • 3elik C,Duman O.Allee effect in a discrete-time predator-prey system[J].Chaos Solitons and Fractals,2009,40:1956-1962.
  • 4Wang W X,Zhang Y B,Liu C Z.Analysis of a discrete-time predator-prey system with Allee effect[J].Ecological Complexity,2011,8:81-85.
  • 5Liu X L,Xiao D M.Complex dynamic behaviors of a discrete-time predator-prey system[J].Chaos Solitons and Fractals,2007,32:80-94.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部