期刊文献+

一类环面的Khler度量

Khler Metric of a Kind of Torus
下载PDF
导出
摘要 首先构造了利用无限循环群作用所形成的一类环面,此循环群异于环面的常见构造群;然后构造了此类环面的整体向量场;最后构造了此类环面的复结构和与此复结构相融的Khler度量,并利用此度量表示,Loewner环不等式和Loewner环收缩缺陷不等式给出了所构造环面中部分环面面积的下界. Firstly,a kind of torus is constructed by the method of infinite cyclic group action which is different from general construction group of torus.Secondly,the global vector fields are constructed on the torus.Thirdly,one complex structure and one Khler metric which is harmonized with the complex structure are also constructed.Finally,the bottom bound of the area of some kind of torus is given by the Khler metric,Loewner's torus inequality and Loewner's torus inequality with isosystolic defect.
作者 杨永举 廖冬
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第5期31-34,共4页 Journal of Henan Normal University(Natural Science Edition)
基金 河南省基础与前沿技术研究计划项目(092300410220) 南阳师范学院专项项目(nytc2005k37)
关键词 环面 复结构 Khler度量 Loewner环不等式 torus complex structure Khler metric Loewner's torus inequality
  • 相关文献

参考文献9

  • 1Vaisman I. Generalized Hopf manifolds[J]. Geometriae Dedicate, 1982,13 (3) :231-255.
  • 2Gray A. modern differential geometry of curves and surfaces with mathematica i[M]. Boca Raton CRC Press, 1997.
  • 3Katz M. Systolic geometry and topology[M]. Providence R I : American Mathematical Society,2007:137.
  • 4Brunnbauer M. Homological invariance for asymptotic invariants and systolic inequalities[J]. Geom Funct Anal, 2008,18 (4); 1087-1117.
  • 5Brunnbauer M. On manifolds satisfying stable systolic inequalities[J]. Math Ann,2008,342(4) :951-968.
  • 6Babgert V, Katz M, Shnider S. Wirtinger inequalities, Cayley 4-form, and homotopy [J]. Duke Math J ,2009,146(1) : 35-70.
  • 7Charles H,Karin U, Mikhail G. Loewner's Torus Inequality with Isosystolic Defect[J]. J Geom Anal,2009,19(4): 796-808.
  • 8Kodaira K. Complex manifolds and Deformation of Complex Struetures[M]. Berlin:Springer-Verlag,2004.
  • 9Boothby W M. An introduction to differentiable manifolds and Riemannian geometry[M]. New York: Academic Press, 1986:118.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部