期刊文献+

利用单调函数求线性乘性规划的全局最优解 被引量:1

Solving Globally the Linear Multiplicative Programming Problem(LMP) via Monotonic Function
下载PDF
导出
摘要 对广泛应用于工厂布局设计、超大规模集成电路设计等实际问题中的线性乘性规划问题(LMP)提出了一种单调全局优化算法.并从理论上证明了本算法的收敛性.数值实验表明了提出的方法是可行的和有效的. A global monotonic optimization algorithm is proposed for the linear multiplicative programming(LMP),which can be applied to plant layout design,VLSI chip design and so on pratical problems.Theoretically,the proof which the proposed branch and bound algorithm is convergent to the global minimum is given.And the numerical experiments problem are given to illustrate the feasibility and efficiency of the proposed algorithm.
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第5期35-37,共3页 Journal of Henan Normal University(Natural Science Edition)
基金 国家自然科学基金(10671057) 河南省高校科技创新人才支持计划项目(2008 HASTIT023)
关键词 全局优化 线性乘性规划 分枝定界 global optimization LMP branch and bound
  • 相关文献

参考文献4

二级参考文献8

  • 1申培萍,焦红伟.一类非线性比式和问题的全局优化算法[J].河南师范大学学报(自然科学版),2006,34(3):5-8. 被引量:3
  • 2Konno H, Kuno T. Linear muhiplicative programming[J]. Engineering Optimization, 1992,56 : 51 - 64.
  • 3Matsui T. NP-Hardness of linear multiplieative programming and related problems[J]. J of G O, 1996,9 : 113-119.
  • 4Benson H P. On the global optimization of sums of linear fractional functions ver a convex set[J]. Journal of Optimization Theory and Applications, 2004, 121: 19--39.
  • 5Benson H P. Global optimization algorithm for the nonlinear sum of ratios problem[J].Journal of Optimization Theory and Application, 2002, 112:1--29.
  • 6Shen P P, Ma Y, Chen Y Q. A robust algorithm for generalized geometric programming[J].Journal of Global Optimization, 2008, 41 (4): 593--612.
  • 7申培萍,刘利敏,段运鹏.带多乘积约束的线性规划问题的求解新方法[J].河南师范大学学报(自然科学版),2007,35(3):209-211. 被引量:2
  • 8焦红伟,尹景本,陈永强.一类线性比式和问题的全局优化算法(英文)[J].河南科学,2008,26(3):263-267. 被引量:2

共引文献3

同被引文献7

  • 1陈永强,张曙光.全局求解符号线性比式和问题[J].河南师范大学学报(自然科学版),2011,39(2):20-23. 被引量:1
  • 2Benson H P. Decomposition Branch-and-Bound Based Algorithm for Linear Programs with Additional Multiplicative Constraint[J]. J Op- tim Theory Appl, 2005,126 : 41-61.
  • 3Thoai N V. Convergence and Application of a Decomposition Method Using Duality Bounds for Nonconvex Global Optimization[J]. J Op- tim Theory Appl, 2002,113 : 165-193.
  • 4Peiping S, Minna G. A Duality-Bounds Algorithm for Nonconvex QuadraticPrograms with Additional Multiplicative Constraints[J]. Ap- plied Mathematics and Computation, 2008,198 (1) : 1-1 1.
  • 5Shen P P, Ma Y, Chen Y Q. Global optimization for the generalized polynomial sum of ratios problem[J]. Journal of Global Optimiza tion, 2011,50(3) :439-455.
  • 6Gao Y. An outcome space finite algorithm for solving linear muhiplicative programming[J]. Applied Mathematics and Computation, 2006, 179:494- 505.
  • 7陈玉花,李晓爱,申培萍.一类非凸规划的分支定界算法[J].河南师范大学学报(自然科学版),2012,40(3):6-10. 被引量:2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部