期刊文献+

超临界600MW汽轮机通流经济性优化 被引量:1

Optimizing Economic of Supercritical 600MW Turbine
下载PDF
导出
摘要 应用先进的CFD分析技术与通流设计技术,完成了对引进型超临界600MW机组的通流经济性优化。文中举例简要介绍了优化过程中采用的叶型优化设计技术、全三元CFD整缸分析优化技术等。分析的结果表明,新的技术使得超临界600MW机组的经济性得到了提高,达到了优化的目的,可以在工程中推广使用。 Optimizing economic of supercritical 600MW turbine was accomplished by using advanced CFD analysis technology and design technology of flow-path. In this paper, it was simply introduced that optimizing technology about profile and analysis of whole cylinder. Results of analysis showed that the optimizing technology improved aerodynamic performance of supercritical 600MW turbine which should be widely applied in engineering.
出处 《东方汽轮机》 2011年第4期15-21,共7页 Dongfang Turbine
关键词 超临界600MW汽轮机 通流经济性 优化技术 全三元CFD 整缸分析 气动性能 supercritical 600MW turbine, economic of turbine, optimizing technology, three dimension CFD simulation, analysis of whole cylinder, aerodynamic performance
  • 相关文献

参考文献4

  • 1姚征,陈康民.CFD通用软件综述[J].上海理工大学学报,2002,24(2):137-144. 被引量:213
  • 2舒士甄等编著.叶轮机械原理[M]. 清华大学出版社, 1991
  • 3Denton J D.A Time Marching Method for Two-and Three-Dimensional Blade-to-Blade Flows[].Marchmood Engineering Laboratories Report R/M/R.
  • 4Hirsch,C. Numerical Computation of Internal and External Flows . 1988

二级参考文献38

  • 1[1]Harten A.High resolution scheme for hyperbolic system of conservation law[J].J Comp Phys,1983,(49): 357~393.
  • 2[2]Sweby P K.High resolution schemes using flux limiters for hyperbolic conservation laws[J].SIAM J Num Anal,1984,21: 995~1 011.
  • 3[3]Yee H C.Construction of explicit and implicit symmetric TVD scheme and their applications[J].J Comp Phys,1987,(68): 151~179.
  • 4[4]Steger J L,Warming R F.Flux vector splitting of the inviscid gasdynamic equations with application to finite difference methods[J].J Comp Phys,1981,(40): 263~293.
  • 5[5]Chakravarthy S R.The split-coefficient matrix method for hyperbolic system of gas dynamics equations[A].AIAA Paper[C],80-268,1980.
  • 6[6]Roe P L.Approximate Riemann solvers,parameter vectors and different schemes[J].J Comp Phys,1981,(43): 357~372.
  • 7[7]Van Leer B.Towards the ultimate conservative diffe-rence scheme V: A second order sequal to Godunov's method[J].J Comp Phys,1979,(32): 101~136.
  • 8[8]Jameson A,Schmidt W,Turkel E.Numerical solution of the Euler equation by finite volume methods with Runge-Kutta time stepping schemes[A].AIAA Paper [C],81-1259,1981.
  • 9[9]Ni R H.A Multiple grid scheme for solving the Euler equation[J].J AIAA,1982,20: 1 565~1 571.
  • 10[10]Van Leer B,Tai C H,Powell K G.Design of optimally smoothing multistage schemes for the Euler equations[A].AIAA Paper[C],89-1933,1989.

共引文献212

同被引文献2

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部