期刊文献+

基于混沌演化的蒸汽动力装置负荷控制优化

Optimization of load controller for steam power plant using evolutionary algorithm and chaos
下载PDF
导出
摘要 为提高蒸汽动力装置负荷控制系统适应机组负荷变化的能力,将混沌理论和演化算法相结合,基于系统辨识提出一种PID控制参数的在线优化方法.该方法利用演化算法的全局最优性和混沌的遍历性实现对控制器参数的在线整定,避免了传统PID控制算法受控制对象影响较大,只有在各参数整定良好的前提下才能得到满意控制效果的缺点.仿真试验证明:采用混沌演化优化后的控制系统在保留传统PID控制结构简单、易于实现、可消除静差等优点的同时,还具有超调小、响应迅速、抗干扰能力强等特点,适用于工况频繁变化场合下的自适应控制. In order to improve the load control effect of steam power plant units, an on-line PID control parameters optimization method that using evolutionary algorithm and chaos was proposed based on system identification. This method adopts the global optimization of evolutionary algorithm and the ergodicity of chaos to achieve the on-line optimization for PID parameters, conquering the shortcoming that the traditional PID tuning method is greatly influenced by the controlled objects and can only obtain satisfying control effect when every paramete has been set correctly. The simulation shows that the optimized control system adopting evolutionary algorithm and chaos retains the excellences of the traditional PID control such as simple structure, easily implemented, no steady error and so on, and possesses low overshoot, fast response and good anti-jamming capability at the sametime, so it is suitable for the self-adaptive control of the units which need frequent load changes.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2011年第12期2202-2207,共6页 Journal of Zhejiang University:Engineering Science
基金 军队"十一五"预研资助项目(4010102010504)
关键词 演化计算 混沌 系统辨识 负荷控制 蒸汽动力装置 PID控制器 evolutionary computation chaos system identification load control steam power ptant PID controller
  • 相关文献

参考文献10

  • 1YU T, CHAN K W, TONG J P, et al. Coordinated ro- bust nonlinear boiler-turbine-generator control systems via approximate dynamic feedback linearization[J]. Journal of Process Control, 2010, 20(4): 365-374.
  • 2王庆利,王丹,井元伟.基于模糊解耦的火电单元机组负荷控制[J].控制与决策,2006,21(4):435-439. 被引量:14
  • 3韩忠旭,齐小红,刘敏,周广.姚孟电厂2号机300MW单元机组机炉协调受控对象的数学模型[J].电网技术,2006,30(11):47-50. 被引量:22
  • 4顾红艳,李东海,杨献勇,薛亚丽.热力过程非线性PI控制器参数优化和性能分析[J].清华大学学报(自然科学版),2006,46(11):1896-1899. 被引量:3
  • 5王鑫鑫,徐向东.分层协同进化模型在热力系统在线优化中的应用研究[J].热能动力工程,2002,17(4):339-342. 被引量:2
  • 6HINCI-ILIFFE M P, WILLIS M J. Dynamic systems modeling using genetic programming [J]. Computers and Chemical Engineering, 2003, 27(12) : 1841 - 1854.
  • 7BAI Y, JIANG Y H, ZHU Y C, et al. Modeling a com- plex system using multi-objective genetic programming [C] // Proceedings on the 3rd IEEE Conference on Indus- trial Electronics and Applications (ICIEA 2008). Singa- pore: ICIEA, 2008:781-784.
  • 8JOHN M. Genetic algorithms for modeling and optimi- zation [J]. Journal of Computational and Applied Math- ematics, 2005, 184(2) : 205 - 222.
  • 9TOMAS K. Chaos for engineers-theory, applications and control [M]. Beijing.. National Defense Industry Press, 2008.. 118-138.
  • 10CAPONTTON R, FORTUNA L, FAZZINO S, et al. Chaotic sequences to improve the performance of evolu- tionary algorithms [J]. IEEE Transaction on Evolution- ary Computation, 2003, 7(3) : 289 - 304.

二级参考文献29

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部