期刊文献+

单位圆内解析函数的一个性质 被引量:1

One Property of Analytic Function in the Unit Disc
下载PDF
导出
摘要 利用单位圆内Nevanlinna理论,研究了单位圆内函数f=eg的性质.设g为单位圆D={z;|z|<1}内的解析函数,f=eg.若g为可允许的,则ρ(f)=∞;若pg∈G,则p 3≤ρ(f)≤p. By using the Nevanlinna's theory of meromorphic functions in the unit disc, the properties of function f = eg in the unit disc are investigated. Let g be an analytic function in the unit disc D = {z;|z |〈 1}, and f = eg . It is shown that p(f) = ∞ provided that g is admissible, and p - 3 ≤p(f) ≤p provided that g e Gp.
作者 毛志强 吴蝶
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2011年第6期608-609,共2页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 国家自然科学基金(11171119)资助项目
关键词 单位圆 解析函数 增长级 unit disc analytic function order of growth
  • 相关文献

参考文献8

  • 1Tsuji M. Potential theory in modem function theory [M]. Tokyo: Maruzen Co Ltd, 1959.
  • 2Laine I. Nevanlinna theory and complex differential equations [M]. Berlin: Walter de Gruyter, 1993.
  • 3Heittokangas J. On complex differential equations in the unit disc [J]. Ann Acad Sci Feun Math Diss, 2000, 122: 1-54.
  • 4Duren P. Theory of H^p spaces [M]. New York: Academic Press, 1970.
  • 5Chyzhykov I, Gundersen G G, Heittokangas J. Linear differential equations and logarithmic derivative estimates [J]. Proc London Math Soc, 2003, 86(3): 735-754.
  • 6王锦熙,易才凤,徐洪焱.关于单位圆内高阶线性微分方程的复振荡[J].江西师范大学学报(自然科学版),2009,33(2):194-200. 被引量:5
  • 7Pavlovi'c Miroslav. Lacunary series in weighted spaces of analytic functions [J]. Arch Math, 2011, 97: 467-473.
  • 8Kwon E G, Pavlovi'c M. Bibloch functions an composition operators from Bloeh type spaces to BMOA [J]. J Math Anal Appl, 2011, 382: 303-313.

二级参考文献10

  • 1Hayman W.Meromoiphic functions[M].Oxford:Claredon Press,1964.
  • 2Yang Lo.Value distribution theory[M].Berlin:Spring-Verlag,Science Press,1993.
  • 3Heittokangas J.On complex differential equations in the unit disc[J].Ann Acad Sci Fenn Math Diss,2000,122:1-54.
  • 4TSUJI M.Potential theory in modern function theory[M].Tokyo:Maruzen Co LTD,1959.
  • 5Chyzhykov I.Gundersen G,Heittokangas J.Linear differential equations and logrithmic derivative estimates[J].Proc London Math Soc,2003,86:735-754.
  • 6Heittokangas J.Korhonen R,R tty J.Growth estimates for solutions of linear complex differential equations[J].Ann Acad Sci Fenn Math,2004,29:233-246.
  • 7高仕安 陈宗煊 陈特为.线性微分方程的复振荡理论[M].武汉:华中理工大学出版社,1997..
  • 8曹廷彬,仪洪勋.关于单位圆内解析系数的二阶线性微分方程的复振荡[J].数学年刊(A辑),2007,28(5):719-732. 被引量:13
  • 9陈宗煊.一类单位圆内微分方程解的性质[J].江西师范大学学报(自然科学版),2002,26(3):189-190. 被引量:20
  • 10李叶舟.单位圆盘上二阶微分方程解的增长性[J].纯粹数学与应用数学,2002,18(4):295-300. 被引量:24

共引文献4

同被引文献9

  • 1Hayman W K.Meromorphic functions[M] .Oxford:Clarendon Press,1964.
  • 2Tsuji M.Potential theory in modern function theory[M] .Tokyo:Maruzen Press,1959.
  • 3Sons L R.Unbouned functions in the unit disc[J] .Internet J Math Sci,1983,6(2):201-242.
  • 4Heittokangas J.On complex linear differential equations in the unit disc[J] .Ann Acad Sci Fenn Math Diss,2000,122:1-54.
  • 5Levin B J.Distribution of zeros of entire functions[M] .Providence:Amer Math Soc,1980.
  • 6Bank S S.A general theorem concerning the growth of solutions of first-order algebraic differential equations[J] .Composition Math,1972,25 (1):61-70.
  • 7Hayman W K.On the characteristic of functions meromorphic in the unit disk and of their integrals[J] .Acta Math,1964,112(1):181-214.
  • 8涂金,邓冠铁.系数A_0起支配作用的高阶线性微分方程解的增长性[J].数学物理学报(A辑),2010,30(4):945-952. 被引量:5
  • 9陈宗煊.一类单位圆内微分方程解的性质[J].江西师范大学学报(自然科学版),2002,26(3):189-190. 被引量:20

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部