期刊文献+

街景图像中基于级联特征的行人检测方法

Cascade features based method for pedestrian detection in street scene
下载PDF
导出
摘要 针对街景中的行人检测问题,提出了一种基于级联特征的行人检测方法。首先采用简单特征提取可能包含行人的潜在区域;然后采用基于概率接受的方法,结合方向梯度直方图(HOG)特征进行密集扫描分类;最后用非最大化抑制(NMS)过程聚合分类结果。实验结果表明一方面这种基于级联特征的方法使两类特征互补提高了检测精度;另一方面基于概率接受的方法进行密集扫描分类使得检测时间显著缩短。 This paper described a cascade features based algorithm towards pedestrian detection in the street scene.This method starts with using simple feature to extract potential pedestrian-included-region from the entire image.The probability receptive-based method with Histogram of Oriented Gradients(HOG) was then employed for dense scanning and classification.At last Non-Maximum Suppression(NMS) was implemented to fuse the classified results.It demonstrates in experiments that the detection accuracy is improved due to the complementation of two features from cascade features based method,and the detection time is significantly shortened for dense scanning and classification by using probability receptive-based approach.
出处 《计算机应用》 CSCD 北大核心 2011年第A02期129-132,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(60705013) 中国博士后科学基金特别资助项目(200902665) 中国博士后科学基金资助项目(20070410977) 湖南省自然科学基金资助项目(08JJ4018)
关键词 行人检测 级联特征 基于概率接受的方法 方向梯度直方图 密集扫描分类 非最大化抑制 pedestrian detection cascade feature probability receptive-based method Histograms of Oriented Gradients(HOG) dense scanning and classification Non-Maximum Suppression(NMS)
  • 相关文献

参考文献13

  • 1MOHAN A, PAPAGEORGIOU C, POGGIO T. Example-based object detection in images by components[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23 [ 4) : 349-361.
  • 2VIOLA P, JONES M J, SNOW D. Detecting pedestrians using patterns of motion and appearance[ C]//The 9th 1CCV. Nice, France: Springer, 2003, 1: 734-741.
  • 3DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[ C[//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2005: 886-893.
  • 4WOHLER C, ANLAUF J. An adaptable time-delay neural-network algorithm for image sequence analysis[ .1]. IEEE Transactions on Neural Networks, 1999, 10(6): 1531-1536.
  • 5曾春,李晓华,周激流.基于感兴趣区梯度方向直方图的行人检测[J].计算机工程,2009,35(24):182-184. 被引量:27
  • 6ZHU QIANG, YEH MEI-CHEN, CHENG KWANG-TING, et al. Fast human detection using a cascade of histograms of oriented gradients[ C]//CVPR 2006. Washington, DC: IEEE Computer Society, 2006:1491-1498.
  • 7WANG XIAOYU, HAN T X, YAN SHUICHENG. An hog-lbp human detector with partial occlusion handling[ C]//ICCV 2009. Berlin: Springer, 2009:32 -39.
  • 8DALAL N. Finding people in images and videos[ D]. Saint Ismier: Institute National Polytechnique De Grenoble, 2006.
  • 9SCHWARTS W R, KEMBHAVI A, HARWOOD D, et al. Human detection using partial least squares analysis[ C]//2009 IEEE 12th International Conference on Computer Vision. Berlin: Springer, 2009:24-31.
  • 10OGALE A S, ALO1MONOS Y. A roadmap to the integration of early visual modules[ J]. International Journal of Computer Vision, 2007, 72(1): 9-25.

二级参考文献3

  • 1潘锋,王宣银.基于支持向量机的复杂背景下的人体检测[J].中国图象图形学报(A辑),2005,10(2):181-186. 被引量:16
  • 2Schauland S, Park S B, Zhang Yan. Vision-based Pedestrian Detection Improvement and Verification of Feature Extraction Methods and SVM-based Classification[C]//Proc. of IEEE Intelligent Transportation Systems Conference. [S. l.]: IEEE Press, 2006: 97-102.
  • 3Dalai N. Finding People in Images and Videos[D]. Grenoble, France: The French National Institute for Research in Computer Science and Control, 2006.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部