期刊文献+

基于小波系数相关性的图像去噪 被引量:8

Image denoising based on correlation of wavelet coefficients
原文传递
导出
摘要 本文提出了一种基于小波系数相关性的图像去噪方法。针对自适应去噪方法平滑掉实际信号的不足,利用小波分解系数近指数的衰减特性及同一尺度上各信号分量的相关性分析,对每个小波系数设置不同的阈值,区别对待信号的低频和高频系数,最后重构小波。实验结果表明,从视觉和峰值信噪比(PSNR)上,本文使用的方法优越于全局阈值法。 An image denoising method based on the wavelet coefficients was proposed in the paper.According to exponent attenuation of the wavelet coefficients in image decomposition and the correlation analysis of coefficients at the same scale,each coefficient of wavelet component was set different threshold and different algorithms for the coefficients of low and high frequencies were adopted respectively.Finally,the denoised image was obtained by wavelet reconstruction.The results showed that the proposed method was more efficient compared with traditional approaches in terms of visual quality and PSNR(Peak Signal Noise Ratio).
出处 《测绘科学》 CSCD 北大核心 2012年第1期94-95,共2页 Science of Surveying and Mapping
基金 国土环境与灾害监测国家测绘局重点实验室开放基金资助项目(LEDM2009A01)
关键词 小波变换 相关性 图像去噪 峰值信噪比 wavelet transform correlation image denoising peak signal noise ratio
  • 相关文献

参考文献10

  • 1Ting-Li Chen. A Markov Random Field Model for Medical Image Denoising [ C ] //IEEE Biomedical Engineering and Informatic, 2009, (s) : 1-6.
  • 2WANG Song, WANG Weihong. A Method Using Nonparametric Hidden Markov Trees For Image Denoising [ C ]//IEEE Computational Intelligence and Natural computing, 2009, (s): 143-146.
  • 3Xiang Ma, Schonfeld, D, Khokhar, A. A General Two-Dimensional Hidden Markov Model and its Application in Image classification [ C ] //IEEE Image processing, 2007, (s): Ⅵ-41-Ⅵ-45.
  • 4Fahmy, Ahmed, S. Background noise in cardiac mag- netic resonance images using bayes classifier [ C ] // IEEE Engineering in Medicine and Biology Society, 2008, (s) : 3393-3396.
  • 5倪虹霞,杨信昌,陈贺新.基于小波自适应阈值的图像去噪方法[J].吉林大学学报(信息科学版),2005,23(4):445-448. 被引量:11
  • 6Y. Xu, B. Weaver, D. Healy Wavelet transform domain filters: a spatially selective noise filter ration technique [C] //IEEE Trans. On Image Process, 1994, (s): 747-758.
  • 7张鑫,井西利.一种基于正态反高斯模型的贝叶斯图像去噪方法[J].光学学报,2010,30(1):70-74. 被引量:12
  • 8陈莹,纪志成,韩崇昭.基于小波域加权阈值的图像去噪方法[J].计算机工程,2007,33(19):183-185. 被引量:10
  • 9Mallat, Stephane, A wavelet tour of signal processing [ M ] . China Machine Press, c2003.
  • 10黄志宇,刘保华,陈高平,张先军,冯松立.随机信号的功率谱估计及Matlab的实现[J].现代电子技术,2002,25(3):21-23. 被引量:35

二级参考文献33

  • 1高浩军,杜宇人.中值滤波在图像处理中的应用[J].电子工程师,2004,30(8):35-36. 被引量:67
  • 2邓铭辉,郝燕玲.3D小波变换的抗裁剪鲁棒数字图像水印算法[J].吉林大学学报(信息科学版),2004,22(4):420-425. 被引量:1
  • 3S. Mallat. A theory for multiresolution signal decomposition: the wavelet representation[J]. IEEE Trans. Pattern Anat. Machine Intell. , 1989, 11(7): 674-693.
  • 4C. Bouman, K. Sauer. A generalized Gaussian image model for edge-preserving MAP estimation [J]. IEEE Trans. Image Process. , 1993, 2(3): 296-310.
  • 5M. S. Crouse, R. D. Nowak, R. G. Baraniuk. Wavelet-based statistical signal processing using hidden Markov models [J]. 1EEE Trans. Signal Process. , 1998, 46(4) : 886-902.
  • 6J. Portilla, V. Strela, M. Wainwright et al.. Image denoising using scale mixture of Gaussians in the wavelet domain [J]. IEEE Trans. Image Process. , 2001, 12(11): 1338-1351.
  • 7S. G. Chang, B. Yu, M. Vetterli. Adaptive wavelet thresholding for image denoising and compression [J]. IEEE Trans. Image Process. , 2000, 9 (9): 1532-1546.
  • 8A. Achim, P. Tsakalides, A. Beserianos. SAR Image denoisiug via Bayesian wavelet shrinkage based on heavy tailed modeling [J]. IEEE Trans. Geosci. Remote Sensing, 2003, 41 (8) : 1773-1784.
  • 9Xie Hua, L. E. Pierce, F. T. Ulaby. SAR speckle reduction using wavelet denoising and Markov random field modeling[J]. IEEE Trans. Geosci. Remote Sensing, 2002, 40 ( 10 ) : 2196-2212.
  • 10Portilla Javier, Strela Vasily, Wainwright Martin J et al.. Image denoising using scale mixtures of Gaussians in the wavelet domain[J]. IEEE Trans. Image Process. , 2003, 12(11): 1338-1351.

共引文献64

同被引文献87

引证文献8

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部