期刊文献+

基于结构信息的图像质量评价模型 被引量:2

Structural Information-Based Image Quality Assessment Models
下载PDF
导出
摘要 针对客观数字图像质量评价方法结构相似度(SSIM)算法对严重失真类型的评价值与主观评价(MOS)值之间存在着明显差异的问题,对几种将SSIM算法与人眼视觉系统(HVS)特性相结合的算法基于图像边缘的ESSIM算法、基于空间域频域敏感的HSSIM算法,以及基于信息内容权值的IWSSIM算法进行了比较。从实验数据可知,ESSIM,HSSIM算法的准确性有不同程度的提高,而IWSSIM模型在比较主客观值相关的单调性方面更为稳定。实验结果为今后结构相似度算法的改进提供了依据,指明研究方向。 The objective assessment algorithm Structural Similarity(SSIM) of image quality was not consistent with the Mean Opinion Score (MOS) in particular types of distoration, such as seriously blurred type, etc. In this paper, three models Edeg-based SSIM, HVS-based SSIM, and IW-SSIM which had considered the characteristics both of HVS and structural information were compared in evaluating the seriously Gaussian blurred images. The experimental datas showed that, the IW-SSIM's monotony perfomance was more stable than other models in the relationship between the subjective and objective values, as well as the growing accuracy of the ESSIM and HSSIM. These experimental results are benefit for improvingt the SSIM approach.
出处 《计算机系统应用》 2012年第2期42-46,共5页 Computer Systems & Applications
基金 上海市科委基金(09220502700)
关键词 结构信息 人眼视觉特征 图像质量评价 对比度敏感度特性 互信息量 structural information human visual system image quality assessment contrast sensitivity mutualinformation
  • 相关文献

参考文献10

  • 1Sheikh HR, Bovik AC. Image information and visual quality. Acoustics, Speech, and Signal Processing, IEEE international conference,2004,3(3): 1-26.
  • 2VQEG. Final Report from the video quality experts group on the validation of objective modles of video quality asses- sment.VQEG, 2008. http://www.vqeg.org/.
  • 3Wang Z, Bovik AC, Sheikh HR, et al. Image quality assessment: from error visibility to structural simility. IEEE Transaction on Image Processing magazine,2004,13(4): 600-612.
  • 4ITU-R. Recommendation BT. 500-11 Methodlogy for the subjective assessment of the quality of television pictures. ITU-R.2002.
  • 5蒋刚毅,黄大江,王旭,郁梅.图像质量评价方法研究进展[J].电子与信息学报,2010,32(1):219-226. 被引量:177
  • 6Chert GH. Yang CL, et al. Edge-based structural similarity for iamge quality assessment. ICASSP. IEEE international conference,2006,2(5):933-936.
  • 7Wang B, Wang ZB, et al. HVS-based structural similarity for image quality assessment.IEEE Signal Processing Maga- zine,2008,4(9): 1194-1197.
  • 8Wang Z, Sheikh HR. Objective image quality assessment. Furht B, Marqure O. The handbook of Video Database: Design and Applications.CRC Press, 2003:1041-1078.
  • 9Wang Z, Li Q. Information content weighting for perceptual image quality assessment. IEEE Transactiont on Image Processing magazine. 2010,20(5): 1185-1197.
  • 10Sheikh HR, Wang Z, Bovik AC, et al. Image and video quality assessment research at LIVE Database Release 2. (2006-05-10)/2007(2007-06-30).http://live.ece.utexas.edu /research/quality.

二级参考文献48

  • 1马苗,郝重阳,韩培友,樊养余,黎新伍.基于灰色关联分析的图像保真度准则[J].计算机辅助设计与图形学学报,2004,16(7):978-983. 被引量:22
  • 2王涛,高新波,张都应.一种基于内容的图像质量评价测度[J].中国图象图形学报,2007,12(6):1002-1007. 被引量:15
  • 3VQEG. Final report from VQEG on the validation of objective models of video quality assessment[OL]. (2000-3-15). Http://www.its.bldrdoc.gov/vqeg/projects/fr tv _phaseII/do wnloads/VQEGII_Final_Peport.pdf.
  • 4Wang Z, Liaalg L, and Alan C B. Video quality assessment using structural distortion measurement[C]. International Conference on Image Processing, Rochester, NY, USA, 2002, 3: 65-68.
  • 5Yu Z, Wu H R, and Winkler S, et al.. Vision-model-based impairment metric to evaluate blocking artifact in digital video[J]. Proceeding of the IEEE, 2002, 90(1): 154-169.
  • 6Nill N B and Bouzas B H. Objective image quality measure derived from digital image power spectra[J]. IEEE Signal Processing Letter, 2002, 9(3): 388-392.
  • 7Wang Z, Alan C B, and Hamid R S. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
  • 8ITU-R Recommendation BT.500-10. Methodology for the subjective assessment of the quality of the television pictures[S], 2000.
  • 9Baroncint V. New tendencies in subjective video quality evaluation[J]. IEICE Transactions on Fundamentals, 2006, 89(11): 2933-2937.
  • 10Hoffmann H, Itagaki T, and Wood D, et al.. A novel method for subjective picture quality assessment and further studies of HDTV formats[J]. IEEE Transctions on Broadcasting, 2008, 54(1): 1-13.

共引文献176

同被引文献24

  • 1徐云生,尹东.一种基于Contourlet变换的图像质量评价算法[J].电子技术(上海),2010(7):23-26. 被引量:6
  • 2佟雨兵,张其善,常青,祁云平.基于NN与SVM的图像质量评价模型[J].北京航空航天大学学报,2006,32(9):1031-1034. 被引量:30
  • 3Zhang H, Zhu Q, Fan C,etal. Im ment based on prewitt magnitude [J] of" Electronics ge quality assess ]. AEU-Interna Communications 2013, 67(9) .. 799-803.
  • 4Do M N,Vetterli M. The contourlet transform: An ef ficient directional multiresolution image representation [J]. Image Processing, IEEE Transactions on, 2005, 14(12): 2 091-2 106.
  • 5Orellana E L, Ornelas P J J, Olivas G I, et al. Deter mination of absolute threshold and just noticeable difference in the sensory perception of pungency[J]. Journal of Food Science, 2012, 77(3) :S135-S139 .
  • 6I.iJ, Wu K, Zhang X,etal. Image quality assessment based on multi-channel regional mutual information [J]. AEU-International Journal of Electronics and Communications, 2012, 66(9) : 784-787.
  • 7Song L, Liao N, Dong S, et al. The effect of chro matic background for luminance contrast-sensitivity function [C]//Photonics Asia International Society for Optics and Photonics. Orlando: SPIE, 2012: 855820-1-855200-7.
  • 8Sheikh H R, Wang Z, Cormack L, etal. L1VE image quality assessment database release [EB/OL].[2005 10-22]. http//ire. ece. utezas, edu/research/quality.
  • 9Video Quality Experts Group. Final report from the video quality experts group on the validation of objec tive models of video quality assessment, Phase [R/ OL]. [2003 08-25]. http://www, itu. int/ITU-T/ studygroups/comO9/docs/tutorial_opavc, pdf.
  • 10田伟刚,郭雷,李晖晖,杨卫莉.基于区域互信息的特征级多光谱图像配准[J].光电子.激光,2008,19(6):799-803. 被引量:7

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部