期刊文献+

催化湿式空气氧化处理磷霉素钠、黄连素制药废水试验研究 被引量:15

PRETREATMENT OF FOSFOMCIN SODIUM AND BERBERINE PHARMACEUTICAL WASTEWATER WITH CWAO
下载PDF
导出
摘要 研究了用催化湿式空气氧化技术处理高含量、难降解的磷霉素钠和黄连素制药混合废水,考察了非贵金属Mn及稀土元素Ce协同Cu催化反应时CWAO处理效率。结果表明,以黄连素废水中的Cu2+作催化剂,反应温度为250℃、初始氧分压为1.3 MPa、反应停留时间0.5 h的条件下,COD平均去除率可达50%,此时废水中有机磷转化为PO43-;Mn、Ce的加入可使COD的去除率提高12%~18%,其中Mn与Cu协同作用效率最高,在初始氧分压为1.3 MPa下,COD去除率可提高至72%,99%以上的有机磷转化为PO43-,出水BOD5/COD提高至0.85,达到了CWAO预处理即提高2种制药废水可生化性的目的。 Both Fosfomycin sodium and Berberine pharmaceutical wastewater were strength recalcitrant organic wastewater.Conducted in a 0.5 liter high-pressure reactor,the research focused on the treatment of the above-mentioned two types of practical production sewage by catalytic wet air oxidation synchronously.Masses of copper ions in Berberine pharmaceutical wastewater was used as the source of catalyst,which carried the point of waste control by waste.The experiments were carried out at the temperature of 250 ℃ with an oxygen partial pressure of 1.3 MPa and residence times of 30 min.The results showed the average COD(Chemical oxygen demand) removal was up to 50%,and organ phosphorus mostly transformed into inorganic phosphorus,which promoted the biodegradability of the wastewater.Moreover,the influences of homogeneous catalyst types(Mn,Ce and Mn/Ce) to WAO treatment effect were also investigated.The addition of catalysts increased the TOC removal from 12%~18%.Mn(II) exhibited the highest catalytic activities and the COD removal and organ phosphorus transformation rate were up to 72% and 99%,respectively.Through WAO process,the BOD5 /COD ratio of the wastewater increased from 0 to 0.85,which achieved the aim of pretreatment.
出处 《水处理技术》 CAS CSCD 北大核心 2012年第2期72-75,共4页 Technology of Water Treatment
基金 国家水体污染控制与治理科技重大专项(2008ZX07208-003-002)
关键词 催化湿式空气氧化(CWAO) 磷霉素钠废水 黄连素废水 非贵金属 catalytic wet air oxidation Fosfomycin sodium wastewater Berberine pharmaceutical wastewater Non-noble metal
  • 相关文献

参考文献14

  • 1Hoeprich P D, Finn P D. Influence of culture media on antistaphy- lococcal activity of fosfomycin[J].Alalal Microbiol., 1971,22(5):781-785.
  • 2Gray P H H, Lachance R A. Assimilation of berberine by bacteria [J]. Nature, 1956,177(4521): 1182-1183.
  • 3Amin M M, Zilles J L, Greiner J, et al. Influence of the antibiotic erythromycin on anaerobic treatment of a pharmaceutical wastewater [J]. Environ Sci Technol., 2006,40(12): 3971-3977.
  • 4王怡中,李忠,尹玲,胡克源.有机磷农药废水湿式空气氧化预处理的研究[J].环境化学,1993,12(5):408-414. 被引量:27
  • 5Pradt L A. Developments in wet air oxidation[J]. Chem Eng Prog., 1972,68(12): 72-77.
  • 6Akse H N, Senden M M G, Tels M, et al. Detoxification and energy recovery by wet air oxidation of waste streams[J]. Resour Conserv., 1987,14: 351-364.
  • 7Levec J, Pintar A. Catalytic wet-air oxidation processes: A review [J]. Catal Today., 2007,124(3/4): 172-184.
  • 8Santos A, Yustos P, Rodriguez S, et al. Wet oxidation of phenol, cresols and nitrophenols catalyzed by activated carbon in acid and basic media[J]. Appl Catal B-Environ., 2006,65(3/4): 269-281.
  • 9Melero J A, Martinez F, Botas J A, et al. Heterogeneous catalytic wet peroxide oxidation systems for the treatment of an industrial pharmaceutical wastewater [J]. Water Research., 2009,43 (16): 4010- 4018.
  • 10Mishra V S, Mahajani V V, Joshi J B. Wet air oxidation[J]. Ind EngChem Res., 1995,34(1): 42-48.

二级参考文献3

共引文献586

同被引文献210

引证文献15

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部