期刊文献+

基于社会标注的Web资源语义聚类研究 被引量:2

Semantic clustering of web resources based on social annotation
下载PDF
导出
摘要 在深入分析社会标注系统中用户、标签及被标注Web资源之间的关联关系的基础上,提出了基于用户标签的Web资源语义描述获取算法,并基于所获取的Web资源语义描述及其与用户之间的关联关系,利用一种迭代的聚类算法对社会标注系统中的Web资源进行基于语义的聚类,该聚类算法通过迭代不断加强被聚类资源间的一致性信息,从而能够克服传统聚类算法所面临的数据稀疏以及性能问题。研究表明,对Web资源所处环境的各种关联关系的深入分析,能够帮助用户更好地理解和操作相关Web资源,尤其是对于本身特征不充分或难以获取的Web资源来说,关联关系的分析研究具有十分重要的意义。 By analyzing the correlations between users, tags and Web resources in social annotation systems, this paper proposes an algorithm to acquire the semantic descriptions of Web resources based on users' tags. And based on the acquired semantic descriptions and the correlations between the descriptions and users, an iterative algorithm is proposed for semantic clustering of the Web resources in social annotation systems. By mutually reinforcing the agreed information between Web resources during the clustering process, the clustering algorithm can tackle, to some extent, the challenges faced by traditional clustering algorithms such as the data sparseness and the performance constraints. The research illustrates the importance of the analysis of the correlations in the environment of Web resources, especially to those whose features are not sufficient or difficult to acquire.
出处 《高技术通讯》 CAS CSCD 北大核心 2012年第1期48-54,共7页 Chinese High Technology Letters
基金 863计划(2007AA01Z132),国家自然科学基金(60435010),973计划(2007CB311004)和国家科技支撑计划(2006BAC08B06)资助项目.
关键词 社会标注 语义抽取 语义聚类算法 广义关联 social annotation, semantic extraction, semantic clustering algorithm, general correlation
  • 相关文献

参考文献20

  • 1Golder S A, Huberman B A. Usage patterns of collaborative tagging systems. Journal of Information Science, 2006,32 : 198-208.
  • 2Halpin H, Robu V, Shepherd H. The complex dynamics of collaborative tagging, In: Proceedings of the 2007 International Conference on World Wide Web, Banff, Canada, 2007. 211-220.
  • 3Zhou D, Bian J, Zheng S, et al. Exploring social annotations for information retrieval. In: Proceedings of the 2008 International Conference on World Wide Web, Beijing, China, 2008. 715-724.
  • 4Hotho A, Jaschke R, Schmitz C, et al. Information retrieval in Folksonomies: search and ranking. In: Proceedings of the 2006 European Semantic Web Conference, Berlin, Germany, 2006:411-426.
  • 5Bao S, Xue G, Wu X, et al. Optimizing web search using social annotations, In: Proceedings of the 2007 International Conference on World Wide Web, Banff, Canada, 2007. 501-510.
  • 6Noll M G, Meinel C. Web search personalization via social bookmarking and tagging. In: Proceedings of the 2007 International Semantic Web Conference and Asia Semantic Web Conference, Busan, South Korea, 2007. 367-380.
  • 7Xu S L, Bao S H, Fei B, et al. Exploring folksonomy for personalized search. In : Proceedings of the 31 st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Singapore, 2008. 155-162.
  • 8Zhou M W, Bao S H, Wu X, et al. An unsupervised model for exploring hierarchical semantics from social annotations. In: Proceedings of the 2007 International Semantic Web Conference and Asia Semantic Web Conference, Busan, South Korea, 2007. 680-693.
  • 9Li R, Bao S, Yu Y, et al. Toward effective browsing of large scale social annotations, In: Proceedings of the 2007 International Conference on World Wide Web, Banff, Canada, 2007. 943-952.
  • 10Brooks C H, Montanez N. Improved annotation of the blogosphere via autotagging and hierarchical clustering. In: Proceedings of the 2006 International Conference on World Wide Web, Edinburgh,UK, 2006. 625-632.

同被引文献14

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部