期刊文献+

基于支持向量机算法的人脸识别技术研究

Face Recognition Technology Based on Support Vector Machine Algorithm
下载PDF
导出
摘要 在讨论人脸识别算法的基础上,提出了基于支持向量机算法的人脸识别技术,进而分析了其原理,确定了多项式的核,并利用人脸数据对多项式核的SVM进行训练,根据训练结果进行识别实验,结果表明:SVM与传统方法比较,对人脸具有较高的识别率。 According to the discussion of face recognition algorithm,the face recognition technology based on support vector machine is introduced,and then its principle is analyzed,a polynomial kernel function is selected,the SVM of polynomial kernel function using face data is trained,according to which face recognition experiments are conducted.The results show that the SVM has a higher recognition rate than traditional methods.
作者 李东亚 张锏
出处 《宿州学院学报》 2011年第11期52-53,共2页 Journal of Suzhou University
基金 安徽省教育厅自然科学研究一般项目(产学研)"井下斜巷运输安全监控智能处理系统"(KJ2011B183) 宿州学院校级自然科学研究项目"公寓学生住宿情况实时监控报警系统"(2009YZK10)
关键词 人脸识别 支持向量机 核函数 face recognition support vector machine kernel function
  • 相关文献

参考文献6

  • 1B Heisele, T Serre,T Poggio. A component-based frame- work for face detection and identification[J]. International Journal of Computer Vision, 2007,74 (2), 167-181.
  • 2A Samal,P A Iyengar. Automatic recognition and analy- sisof human faces and facial expressions, A survey [J]. Pattern Recognition, 1992,25 : 65-77.
  • 3R Chellappa ,C L Wilson ,S Sirohey. Human and machine recognition of faces: A survey[J]. Proc. IEEE, 1995,83. 705-741.
  • 4Z Jin, J-Y Yang, Z-S Hu,et al. Face recognition based on the uncorrelated discriminant transformation[J]. Pattern Recogn, 2001,34 : 1405-1416.
  • 5ORAVEC M,BESZ EDES, M ROZINAJ. Detection and Recognition of Human Faces and Facial Features, book chapter in Speech, Audio, Image and Biomedical Signal Pro-cessing Using Neural Networks [M]. Germany : Springer-Verlag, 2008 : 283-306.
  • 6周晓蕾,王万良,陈伟杰.基于小波变换和优化的SVM的网络流量预测模型[J].计算机应用与软件,2011,28(2):34-36. 被引量:15

二级参考文献16

  • 1王兆霞,孙雨耕,陈增强,袁著祉.基于模糊神经网络的网络业务量预测研究[J].通信学报,2005,26(3):136-140. 被引量:17
  • 2洪飞,吴志美.基于小波的多尺度网络流量预测模型[J].计算机学报,2006,29(1):166-170. 被引量:46
  • 3邵信光,杨慧中,陈刚.基于粒子群优化算法的支持向量机参数选择及其应用[J].控制理论与应用,2006,23(5):740-743. 被引量:128
  • 4Beverly R,Sollins K,Berger A.SVM learning of IP address structure for latency prediction[C]//Proc.of ACM SIGCOMM 2006 Workshop on Mining Network Data,Pisa,Italy,2006.New York,USA:ACM,2006.
  • 5Mira M,Sommers J,Bardford P,et al.A machine learning approach to TCP throughput predietion[C]//ACM SIGMETRICS Pedormance Evaluation Review.New York,USA:ACM,2007.
  • 6Bermolen P,Ressi D.Support vector regression for link load prediction[J].Computer Networks,2009,53 (2):191-201.
  • 7Shensa M J.The Discrete wavelet transform:wedding the α Trous and Mallat algorithms[J].IEEE Transactions on Signal Processing,1992,40(10):2464-2482.
  • 8Lin H T,Lin C J.A study on sigmoid kernels for SVM and the training of Non-PSD kernels by SMO-type methods[R].Taipei:Department of Computer Science and Information Engineering,National Taiwan University,2003.
  • 9Shevade S K,Keerthi S S,et al.Improvements to the SMO algorithm for SVM regression[J].IEEE Transactions on Neural Networks,2000,11(5):1188-1193.
  • 10Sang A,Li S.J predictability analysis of network traffic[J].Computer Networks,2002,39 (4):329-345.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部