期刊文献+

结合运动矢量和像素递归的全局运动估计方法 被引量:4

Global motion estimation method with motion vectors and pixel recursion
原文传递
导出
摘要 全局运动估计是计算机视觉、视频处理等领域中一项重要研究课题。结合运动矢量和像素递归提出一种新的全局运动估计方法,该方法根据块运动矢量求出运动矢量直方图,找出主要块运动方向作为初始的全局运动方向,并初始化全局运动参数。利用运动矢量间距离及类间方差求出运动矢量分割阈值,自适应地去除外点块区域。根据背景块梯度和值的大小,在每个背景块中选择一到两个特征像素点进行运动参数估计。实验结果表明,该方法具有较快的计算速度,同时也具有较高的计算精度。 Global motion estimation is one of the important research topics in video processing and computer vision. In this paper, a new approach for global motion estimation is proposed by combining the block motion vectors and pixel reeursive algorithm. The proposed method first establishes a vector histogram based on the block motion vectors, and then finds the main block motion vector as initial global motion orientation, to set the initial motion parameters. The threshold of motion segmentation is obtained and outlier areas are adaptively eliminated by using the distance between motion vectors and the variance between clusters. One or two feature pixels in each background block are selected to estimate the global motion parameters according the gradient sum. Experimental results show that the proposed algorithm is accurate, fast, and efficient.
出处 《中国图象图形学报》 CSCD 北大核心 2012年第2期191-196,共6页 Journal of Image and Graphics
基金 国家自然科学基金项目(60870010 60776834)
关键词 全局运动估计 运动矢量 参数模型 外点去除 梯度点选择 global motion estimation motion vector parameter model outlier detection gradient pixels selection
  • 相关文献

参考文献16

  • 1Qi B, Ghazal M, Amer A. Robust global motion estimation oriented to video object segmentation [J]. IEEE Transactions on Image Processing, 2008, 17(6): 958-967.
  • 2Keller Y, Averbuch A. Fast gradient methods based on global motion estimation for video compression [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2003, 13(4): 300-309.
  • 3Li H J, Tang J H, Wu S, et al. Automatic detection and analysis of player action in moving background sports video sequences[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2010,20(3) :351-363.
  • 4Haller M, Krutz A, Sikora T. Evaluation of pixel-and motion vector-based global motion estimation for camera motion characterization//Proceedings of 10th International Workshop on Image Analysis for Multimedia Interactive Services. WIAMIS, London, UK: IEEE Press, 2009: 49-52.
  • 5Dufaux F, Korad J. Efficient, robust and fast global motion estimation for video coding[J]. IEEE Transactions on Image Processing, 2000,9(3): 497-501.
  • 6Alzoubi H, Pan W D. Efficient global motion estimation using fixed and random subsampling patterns//Proceedings of the International Conference on Image Processing. San Antonio, Texas, USA: IEEE Press, 2007:477-480.
  • 7Guo S X, Qiu C G, Ye X F. A kind of global motion estimation algorithm based on feature matching //Proceedings of the IEEE International Conference on Mechatronics and Automation.Washington,DC,UAS:IEEE Press, 2009:107-111.
  • 8Huang Y R, Chau Y.A fast recursive algorithm for gradient-based global motion estimation in sparsely sampled field //Proceedings of Eighth International Conference on Intelligent Systems Design and Applications.Washington,DC,USA:IEEE Computer Society, 2008:84-88.
  • 9Su Y P, Sun M T, Hsu V. Global motion estimation from coarsely sampled motion vector field and the applications [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2005,15(2): 232-242.
  • 10Corrigan D, Kokaram A, Coudray R. Robust global motion estimation from MPEG streams with a gradient based refinement //Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. Toulouse, France: IEEE Press, 2006: 285-288.

二级参考文献9

  • 1俞天力,章毓晋.基于全局运动信息的视频检索技术[J].电子学报,2001,29(z1):1794-1798. 被引量:19
  • 2Smolic A, Sikora T, Ohm J R. Long-term global motion estimation and its application for sprite coding, content description, and segmentation [ J ]. IEEE Transactions on Circuits and Systems for Video Technology, 1999, 9 ( 8 ) : 1227 - 1242.
  • 3Giaccone P R, Greenhin D, Jones G A. Creating virtual scenes using active contours and global motion estimation [ A ]. In : Proceedings Fourteenth International Conference on Pattern Recognition [ C ], Brisbane, Qld, Australia, 1998, 2: 1505- 1507.
  • 4Lu Yan, Gao Wen, Wu Feng. Efficient background video coding with static sprite generation and arbitrary-shape spatial prediction techniques[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2003, 13(5): 394 - 405.
  • 5Yosi Keller, Amir Averbuch. Fast gradient methods based on global motion estimation for video compression [ J]. IEEE Transactions on Circuits and Systems for Video Technology, 2003, 13 (4) : 300- 309.
  • 6Dufaux F, Konrad J. Efficient, robust and fast global motion estimation for video coding [ J ]. IEEE Transactions on Image Processing, 2000, 9(3): 497 -501.
  • 7Konrad J, Dufaux F. Improved global motion estimation for N3 [ A]. In : Meeting of ISO/IEC/SC29/WG11, MPEG97/M3096 [ C ] , San Jose, CA,USA, 1998.
  • 8ISO/IEC WG11 MPEG Video Group. MPEG-4 video verification model version 15.0 [ A ]. In: Mauimeeting of ISO/IEC/JTC1/SC29/ WG11.MPEG98/N3093 [ C], Hawaii, America, 1999.
  • 9贺玉文,赵黎,钟玉琢,杨士强.快速鲁棒的全局运动估计算法[J].软件学报,2001,12(8):1220-1228. 被引量:15

共引文献8

同被引文献32

  • 1耿玉亮,须德.一种鲁棒的摄像机运动分类算法[J].电子学报,2006,34(7):1342-1346. 被引量:3
  • 2徐淑平.视像中的摄像机运动检测[J].计算机技术与发展,2007,17(7):1-3. 被引量:2
  • 3于寅.高等工程数学[M].2版.武汉:华中科技大学出版社,1995:103-106.
  • 4Jain R, Kasturi R, Schunck B G.Machine vision[M].[S.1.]- McGraw-Hill, Inc, 1995 : 415-416.
  • 5Kim E T.Robust 3-D camera motion parameter estimation with applications to video coding[C]//Proceedings of ICASSP 2006, Toulouse, 14-19 May, 2006,2 - 261-264.
  • 6Babaee Kashany V,Pourreza H R.Camera parameters esti- mation in soccer scenes on the basis of points at infinity[J]. Computer Vision,2012,6(2) : 133-139.
  • 7Nikitidis S, Zafeiriou S, Pitas I.Camera motion estimation using a novel online vector field model in particle filters[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2008,18(8) : 1028-1039.
  • 8Arulampalam M S,Maskell S,Gordon N,et al.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Transactions on Signal Processing, 2002, 50(2) : 174-188.
  • 9Doucet A, Godsill S, Andrieu C.On sequential Monte Carlo sampling methods for Bayesian filtering[J].Statistics and Computing, 2000,10 : 197-208.
  • 10Kitagawa G.Monte Carlo filter and smoother for non- Gaussian nonlinear state space models[J].Comput Graph Statist, 1996,5(1) : 1-25.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部