期刊文献+

GPU加速的高分辨率DEM图像地形特征线提取算法 被引量:6

High resolution DEM topographic feature line extraction algorithm using GPU
原文传递
导出
摘要 随着数据采集设备的发展,数字地形分析中高分辨率数字高程模型(DEM)图像越来越普遍。目前已经存在一系列的曲线结构提取算法由于计算复杂度较高,因此在针对高分辨率DEM图像提取地形特征线时效率较低。提出一种在图形处理器(GPU)上加速Steger曲线结构提取算法的策略,利用图形处理器上计算统一设备架构(CUDA)的高度并行性来加速算法中计算密集的Hessian矩阵生成模块以及图像特征点提取模块,对于百万像素级的DEM图像该算法可以获得5倍以上的加速比。 High resolution digital elevation models (DEM) used in digital terrain analysis are becoming more and more prevalent. There are various curvilinear structure extracting algorithms, but the main limitation of them is the .high computing cost, making them less efficient when extracting topographic feature lines from high resolution DEM images. We propose an efficient strategy to speed them up using Steger's curvilinear structure detection algorithm imple mented on graphic processing units (GPU). We choose to speed up the most computation intensive modules of the algorithm ( Hessian matrix generation and feature point detection) using NVIDIA's compute unified device architecture (CUDA). This method can achieve more than five times speedup compared with the original algorithm on central process units (CPU) for large scale DEM images with millions of pixels.
出处 《中国图象图形学报》 CSCD 北大核心 2012年第2期249-255,共7页 Journal of Image and Graphics
基金 中国科学技术部国际合作重点项目(2007DFC10740)
关键词 数字高程模型 地形特征线检测 图形处理器 计算统一设备架构 digital elevation model topographic feature line detection graphic processing unit compute unifieddevice architecture
  • 相关文献

参考文献16

  • 1Jenson S K, Domingue J O. Extraction topographic structure from digital elevation data for geographic information system analysis [J]. Photogrammetric Engineering and Remote Sensing, 1988, 54(11):1593-1600.
  • 2Aumann G, Ebner H, Tang L. Automatic derivation of skeleton lines from digitized contours [J]. ISPRS Journal of Photogrammetry and Remote Sensing. 1991, 46:259-268.
  • 3张宇军. 基于DEM骨架特征点线的地貌自动综合研究.西安:西北大学, 2005.
  • 4Guru D S, Shekar B H, Nagabhushan P.A simple and robust line detection algorithm based on small eigenvalue analysis [J]. Pattern Recognition Letters, 2004, 25(1):1-13.
  • 5Koller T M, Gerig G, Szekely G, et al. Multi-scale detection of curvilinear structures in 2-D and 3-D image data //Proceedings of the 5th International Conference on Computer Vision. Boston: MA, 1995:864-869.
  • 6Steger C. An unbiased detector of curvilinear structures [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1998, 20(2): 113-125.
  • 7Jacob M, Unser M. Design of steerable filters for feature detection using canny-like criteria[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2004, 26(8):1007-1019.
  • 8Liu L, Zhang D, You J. Detecting wide lines using isotropic nonlinear filtering [J]. IEEE Trans. Image Process, 2007, 16(6):1584-1595.
  • 9Li S X, Chang H X, Zhu C F. Fast curvi-linear structure extraction and delineation using density estimation [J]. Computer Vision and Image Understanding,2009, 113(6):763-775.
  • 10Owens J D, Luebke D, Govindaraju N, et al. A survey of general-purpose computation on graphics hardware [J]. Computer Graphics Forum. 2007, 26(1):80-113.

同被引文献221

引证文献6

二级引证文献236

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部