期刊文献+

可换双剩余格上的广义模糊粗糙集及其公理化 被引量:1

General Fuzzy Rough Sets Based on Commutative Double Residuated Lattices with Axiomatic Systems
下载PDF
导出
摘要 双剩余格是t-模、t-余模、模糊剩余蕴涵及其对偶算子的代数抽象,基于格的L-模糊关系是普通模糊关系的推广。作为Pawlak经典粗糙集及多种模糊粗糙集模型的共同推广,提出了一种基于可换双剩余格及L-模糊关系的广义模糊粗糙集模型,引入了正则可换双剩余格的概念,并给出了基于正则可换双剩余格的广义模糊粗糙上、下近似算子的公理系统,推广了多个文献中已有的结果。 The notion of double residuated lattice is an algebraic abstract of triangular norm, triangular co-norm, residuated implication and its dual operator, and the notion of L-fuzzy relation is a generalization of fuzzy relation based on lattices. As a generalization of Pawlak classical rough sets and some fuzzy rough sets, this paper proposes a new generalized fuzzy rough set model based on commutative double residuated lattices and L-fuzzy relations. It also introduces the notion of regular commutative double residuated lattice, and investigates the axiomatic systems of fuzzy rough upper and lower approximation operators based on regular commutative double residuated lattices, which are generalizations of some results in many literatures.
出处 《计算机科学与探索》 CSCD 2012年第2期175-182,共8页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金No.601175044~~
关键词 模糊粗糙集 双剩余格 正则可换双剩余格 公理系统 fuzzy rough set double residuated lattice regular commutative double residuated lattice axiomatic systems
  • 相关文献

参考文献11

  • 1Pawlak Z. Rough sets[J]. International Journal of Infor- mation and Computer Sciences, 1982, 11(5): 341-356.
  • 2Dubois D, Prade H. Rough fuzzy sets and fuzzy rough sets[J]. International Journal of General Systems, 1990, 17(2): 191-208.
  • 3Morsi N N, Yakout M M. Axiomatics for fuzzy rough sets[J]. Fuzzy Sets and Systems, 1998, 100(1/3): 327-342.
  • 4Radzikowska A M, Kerre E E. A comparative study of fuzzy rough sets[J]. Fuzzy Sets and Systems, 2002, 126(2): 137-155.
  • 5Mi Jusheng, Zhang Wenxiu. An axiomatic characterization of a fuzzy generalization of rough sets[J]. Information Sciences, 2004, 160(1/4): 235-249.
  • 6Yang Xiaoping. Minimization of axiom sets on fuzzy ap- proximation operators[J]. Information Sciences, 2007, 177(18): 3840-3854.
  • 7Radzikowska A M, Kerre E E. Fuzzy rough sets based on residuated lattices[J]. Transactions on Rough Sets Ⅱ, 2004, LNCS 3135: 278-296.
  • 8She Yanhong, Wang Guojun. An axiomatic approach of fuzzy rough sets based on residuated lattices[J]. Com- puters and Mathematics with Applications, 2009, 58(1):189-201.
  • 9Liu Guilong. Generalized rough set over fuzzy lattices[J]. Information Sciences, 2008, 178(6): 1651-1662.
  • 10Orlowska E, Radzikowska A M. Double residuated lat- tices and their applications[C]//LNCS 2561: Proceedings of the 6th International Conference and 1st Workshop of COST Action 274 TARSKI on Relational Methods in Computer Science (ReIMICS '01), The Netherlands, Oc- tober 16-21, 2001. London, UK: Springer-Verlag, 2002: 171-189.

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部