期刊文献+

一种引入内容特征的混合推荐方法

A Hybrid Recommender Approach Introduced Content Characteristic
下载PDF
导出
摘要 本文使用聚类算法将项目和用户进行分组,从而引入内容特征,再结合协同过滤方法,构造一种混合的推荐方法。实验结果表明,本文的推荐方法在较高稀疏度下优于一般的协同过滤算法。 A hybrid recommender approach is proposed,which applying clustering algorithm to group the items and the users,thus introducing content characteristic,and combining collaborative filtering techniques.
作者 陈勇
出处 《科技广场》 2011年第11期10-12,共3页 Science Mosaic
基金 江西省科技厅科技支撑项目(2010BGB01303)
关键词 混合推荐 内容特征 聚类 协同过滤 Hybrid Recommender Content Characteristic Clustering Collaborative Filtering
  • 相关文献

参考文献6

  • 1许海玲,吴潇,李晓东,阎保平.互联网推荐系统比较研究[J].软件学报,2009,20(2):350-362. 被引量:544
  • 2Breese J, Heckerman D, and Kadie C.Empiri- cal analysis of predictive algorithms for collaborative filtering [J].In Proc. 14th Conf. Uncertainty Artificial Intelligence, Madison, WI, July 1998.
  • 3Fukunaga K. Introduction to statistical pattem recognition[M].Academic Press 1990.
  • 4B.M.Sarwar, G.Karypis, J.A. Konstan and J. RJedl. Item-based Collaborative Filtering Recommen- dation Algorithms [J].In Proc. 10th Int. WWW Conf, 2001: 285-295.
  • 5http://movielens.umn.edu/login.
  • 6http://www. group lens .org/node/12.

二级参考文献72

  • 1Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217.
  • 2Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201.
  • 3Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186.
  • 4Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999.
  • 5Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362.
  • 6Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html
  • 7Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749.
  • 8Resnick P, Varian HR. Recommender systems. Communications of the ACM, 1997,40(3):56-58.
  • 9Balabanovic M, Shoham Y. Fab: Content-Based, collaborative recommendation. Communications of the ACM, 1997,40(3):66-72.
  • 10Schafer JB, Konstan J, Riedl J. Recommender systems in e-commerce. In: Proc. of the 1 st ACM Conf. on Electronic Commerce. New York: ACM Press, 1999. 158-166.

共引文献543

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部