期刊文献+

浅基础的混沌粒子群优化设计方法 被引量:2

A Study of Chaotic Particle Swarm Optimization for Shallow Foundation Design
下载PDF
导出
摘要 目的探讨浅基础的各种参数对浅基础造价影响的基本规律,提高浅基础设计工作的质量与效率.方法根据中国建筑地基基础设计规范的设计规定,通过相应的工程算例分析,以FORTRAN90语言编制了优化设计计算程序,将混沌粒子群算法引入到浅基础优化设计中.建立了以造价为目标函数的竖向荷载作用下的浅基础优化设计数学模型.对常规浅基础的地基承载力、基础沉降及基础结构强度进行分析与设计.结果提出了一个完整的浅基础优化设计方法,即CPSOSF,并利用其对实际工程中基础宽度、基础高度、基础埋深进行优化得到总造价最低的方案.结论相对于基础宽度而言,基础造价对基础埋深的变化更加敏感.因而工程中为了节省造价,在满足地基稳定和变形要求及有关条件的前提下,应该尽量浅埋基础. In order to improve the quality and efficiency of shallow foundation design and find the laws of the influence of various parameters on the cost of shallow foundation,the Chaotic Particle Swarm Optimization(CPSO)is introduced into the optimal design of shallow foundations.Based on a corresponding engineering project,a mathematical model for the optimal design of Conventional shallow foundation under vertical loadings,according to the China′s code for design of building foundation,is established for the analyses of bearing capacity,the foundation settlement and the foundation structural strength.The computation program for the optimal design is compiled in Fortran90.In this process,a completed method of shallow foundation design and analyses is formed,called CPSOSF,which is used to optimize the foundation width,height and the buried depth of a real project and the best plan for the minimal cost is found consequently.We observe that the cost is more sensitive to the foundation height relative to the foundation width.As a result,the foundation must be shallowly buried in order to economize the cost,on condition that the stability of foundation soil and the settlement of foundation are met.
出处 《沈阳建筑大学学报(自然科学版)》 CAS 北大核心 2011年第6期1013-1020,共8页 Journal of Shenyang Jianzhu University:Natural Science
基金 国家自然科学基金项目(50978182)
关键词 浅基础 优化设计 混沌粒子群 基础造价 shallow foundation optimal design chaotic particle swarm optimization foundation cost
  • 相关文献

参考文献3

二级参考文献19

  • 1陈志华,周韬.基于离散变量的钢筋混凝土独立基础优化设计[J].武汉理工大学学报,2005,27(10):109-112. 被引量:5
  • 2Yi Shang.Global Search Methods for Solving Nonlinear Optimization Problems[DJ.Doctor Dissertation.University of Illinois at UrbanaChampaign,1997
  • 3J Kennedy.The particle swarm:social adaptation of knowledge[C].In:Proc IEEE Int Conf on Evolutionary Computation,1997:303~308
  • 4Carlos A,Coello Ceello.A Survey of Constrained Handling Techniques used with Evolutionary Algorithms
  • 5Mitsuo Gen,Runwei Cheng.Genetie algorithms and engineering design [M].New York:John Wiley & Sona,1997
  • 6A Homaifar,S H Y Lai,X Qi.Constrained optimization via genetic algorithms[J].Simulation,1994; 62 (4):242~254
  • 7David M Himmelblau.Applied nonlinear programming[M].New York:McGraw-Hill,1972
  • 8J Kennedy,R Eberhart.Particle Swarm Optimization[C].In:Proc IEEE Int Conf on Neural Networks,1995:1942~1948
  • 9R Eberhart,J Kennedy.A New Optimizer Using Particle Swarm Theory[C].In:Proc 6th Iht Symposium on Micro Machine and Human Science,1995:39~43
  • 10Russell C Eberhart,James Kennedy.Swarm Intelligence.Morgan Kaufmann.San Diego.ISBN 1-55860-595-9,2001

共引文献52

同被引文献22

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部