期刊文献+

基于LabVIEW的全陶瓷电主轴振动信号预处理模块的研究 被引量:4

LabVIEW-Based Research on Vibration Signal Pre-Processing Module for the Full Ceramic Motorized Spindle
下载PDF
导出
摘要 目的减少信号因振动信号混入噪声而造成的信号采集结果失真,提高振动信号信噪比,更准确地的对电主轴振动信号进行分析.方法在对噪声信号和有用信号进行详细分析的基础上,以LabVIEW为软件平台,采用数学形态学与传统滤波器相结合的算法,使传统滤波器和形态学滤波器相互配合.结果全陶瓷电主轴检测系统信号预处理模块.经定量的仿真结果表明,预处理模块能够使信号误差值降低约40%,并较之单一使用数学形态滤波器或传统滤波器有着更好的滤波效果,滤波误差最多降低了26.2%.结论经过实验验证,预处理模块对振动信号中的噪声信号能够起到良好的抑制作用,能够有效还原被噪声污染的振动信号,提高信噪比.既很好地滤除了混杂在多频振动信号中的噪声信号,又解决了形态学滤波器滤波时在低频信号区域容易造成滤波失真的问题. The paper aims to reduce the vibration signal distort because of the mixing noise signal,improve the SNR and help researchers to analyze the vibration signal more accurate.Based on detailed analysis of the noise signal and the useful vibration signal,this research takes LabVIEW as a platform,use a new method by combining mathematical morphological filter with the traditional filter,allows the traditional filter and the mathematical morphological filter cooperate with each other,which can not only filter the noise signal from the vibration signal,but also solve the problem which the mathematical morphological filter often makes in the low frequency during working.This paper develops a vibration signal pre-processing module for the full ceramic motorized spindle.The quantitative analysis result shows that the pre-processing module could decline the distort value by 40%,which has a better effect compared with mathematical morphological filter or traditional filter singly,and reduce the filtering error to 26.2% at the most.As a conclusion,this module can decline the single distort and reduce effectively the vibration signal which distorted by noise signal,which can improve the SNR.
出处 《沈阳建筑大学学报(自然科学版)》 CAS 北大核心 2011年第6期1177-1182,共6页 Journal of Shenyang Jianzhu University:Natural Science
基金 国家自然科学基金项目(5975162) 辽宁省自然科学基金项目(20102186) 沈阳市科技创新计划项目(F10-205-1-15)
关键词 LABVIEW 数学形态学滤波器 振动信号 预处理 LabVIEW mathematical morphologic filter vibration signal pre-processing
  • 相关文献

参考文献8

二级参考文献55

共引文献212

同被引文献51

  • 1Hartnett M K, Lightbody G, Irwin G W. Identifica- tion of state models using principal components analy- sis[J]. Chemometrics g Intelligent Lab Systems, 1999, 46(1): 181-196.
  • 2Yoon S, MacGregor J F. Principal-component analy- sis of multiscale data for process monitoring and fault diagnosis[J]. Aiche J, 2004, 50(2): 2891-2903.
  • 3Dong D, McAvoy T J. Nonlinear principal compo- nent analysis: based no principal curres and neural network[J]. Computers & Chem Eng, 1996, 20(1) : 65-78.
  • 4Scholkopf B, Smola A, Muller K R. Nonlinear com- ponent analysis as a kernel eigenvalue problem[J]. Neural Comput, 1998, 10(5): 1299-1319.
  • 5Mika S, Rtsch G, Weston J, et al. Fisher discrimi- nate analysis with kernels[C]//Hu Y H, Larsen J, Wilson E, et al. Neural Networks Signal Proc IX. 1999:41-48.
  • 6Lee J M, Yoo C K, Choi S W, et al. Nonlinear process monitoring using kernel principal component analysis[J]. Chem Eng Sci, 2004, 59(1) : 223-234.
  • 7Muller K R, Mika S, Ratseh G, et al. An introduc- tion to kernel-based learning algorithms [J]. IEEE Trans Neural Networks, 2001, 12(2): 181-201.
  • 8Downs J J, Vogel E F. A plant-wide industrial process control problem [J]. Computers b- Chem Eng, 1993, 17(3).- 245-255.
  • 9YIN Hongsheng,ZHANG Peiqian Jiansheng,HUA Gang.Feature extraction and recognition of ventilator vibration signal based on ICA/ SVM[C].NJ,United States,IEEE computer society,2009.
  • 10KOENIG K,KOCK I,NESTEROV A,et al.Programmable high voltage CMOS chips for- particle-based high-density combinatorial pep- tide synthesis[J].Sensors and actuators chemi- cal,2010,147(2):418-427.

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部