期刊文献+

概念格的公理化 被引量:5

Axiomatization of concept lattice
下载PDF
导出
摘要 概念格是数据分析和知识表示的一种有效工具。研究概念格的公理化问题。得到了两组关于概念格的公理组,且每组含有六个独立的公理。公理化的研究有助于概念格理论的进一步完善。 Concept lattice is a useful tool for representation and analysis of data.The axioms for characterizing the concept lattice are given.Two groups of axioms that contain six independent axioms for the concept lattice are presented.The research is helpful to the theory of concept lattices.
出处 《计算机工程与应用》 CSCD 2012年第5期41-43,共3页 Computer Engineering and Applications
基金 国家自然科学基金(No.10971186) 漳州师范学院科学研究资助项目(No.SK09015)
关键词 概念格 形式背景 公理组 concept lattice formal concept axioms
  • 相关文献

参考文献12

  • 1Wille R.Restructuring lattice theory:an approach based on hierarchies of concepts[M]//Rival I.Ordered Sets.Dordrecht, Boston: Reidel, 1982: 445-470.
  • 2Ganter B,Wille R.Formal concept analysis mathematical foundations[M].Berlin: Springer, 1999.
  • 3Oosthuizen G D.The application of concept lattice to machine learning[R].South Africa:University of Pretoria, 1996.
  • 4Chen X H, Yao Y Y.A multiview approach for intelligent data analysis based on data operators[J].Information Sciences, 2008, 178: 1-20.
  • 5Shao M W,Liu M,Zhang W X.Set appmximatiom in fuzzy formal concept analysis[J].Fuzzy Sets and Systems, 2007, 158 (23): 2627-2640.
  • 6Ma J M,Zhang W X,Leung Y,et al.Granular computing and dual Galois cormection[J].Information Sciences, 2007, 177 (23) : 5365-5377.
  • 7Belen D A,Pedro A.Formal concept analysis as a support technique for CBR[J].Knowledge-based Systems,2001,14(3) : 163-171.
  • 8Belohlavek R.A note on variable threshold concept lattices: threshold-based operators are reducible to classical concept-forming operators[J].Information Sciences, 2007, 177 (15) : 3186-3191.
  • 9张文修,魏玲,祁建军.概念格的属性约简理论与方法[J].中国科学(E辑),2005,35(6):628-639. 被引量:195
  • 10仇国芳,陈劲.概念知识系统与概念信息粒格[J].工程数学学报,2005,22(6):963-969. 被引量:13

二级参考文献32

  • 1Wille R. Restructuring lattice theory: an approach based on hierarchies of concepts[A]. In: Ivan Rival,editor, Ordered sets[C]. Reidel: Dordrecht-Boston, 1982;445-470.
  • 2Oosthuizen G D. The Application of Concept Lattice to Machine Learning[R]. Technical Report, University of Pretoria, South Africa, 1996.
  • 3Ho T B. Incremental conceptual clustering in framework of Galois Lattice[A]. In: Lu H et al. eds. KDD:Techniques and Applications[C]. World Scientific, 1997;49-64.
  • 4Kent R E et al. Digital Libraries, Conceptual knowledge systems and the Nebula interface[R]. Technical Report, Univerxityof Arkansas, 1995.
  • 5Yao Y Y et al. Concept lattices in rough set theory[A]. Proceeding of 2004 Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS 2004)[C], Dick S et al. (Eds.), IEEE Catalog Number: 04TH8736, June 27-30, 2004;796-801.
  • 6Yao YY. Constructive and algebraic methods of theory of rough set approximation[J]. Information Sciences,1998;1:239-259.
  • 7Yao Y Y. Two views of the theory of rough sets in finite universes[J]. International Journal of Approximate Reasoning, 1996;15:291-317.
  • 8Ganter B, Wille R. Formal Concept Analysis: Mathematical Foundations. Heidelberg, Germany: Springer-Verlag, 1999.
  • 9Pawlak Z. Rough Sets: Theoretical Aspects of Reasoning about Data. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1991.
  • 10Yao Y Y. Concept Lattices in Rough Set Theory. In: Dick S,Kurgan L, Pedrycz W, Reformat M, eds. Proc of the 23rd International Meeting of the North American Fuzzy Information Processing Society. Banff, Canada, 2004, 796-801.

共引文献201

同被引文献98

引证文献5

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部