期刊文献+

一种利用HHT消除信号短时强干扰的方法 被引量:1

Method to eliminate short-time strong disturbance from signal by using HHT
下载PDF
导出
摘要 针对信号中含有的短时强干扰会引起瞬时振幅和瞬时频率明显异常的特点,基于Hilbert-Huang变换(HHT)提出一种消除方法。利用经验模态分解(EMD)将存在短时强干扰的信号分解成本征模函数(IMF)和残余项;计算每阶IMF的瞬时振幅和瞬时频率,在异常区段,将其根据正常区段的数据进行拟合,用拟合后的数据代替原数据。将处理后的瞬时振幅和瞬时频率重构得到一组新的IMF,对残余项,直接去除异常波动。将所有新的IMF和残余项重新组合,所得信号就消除了干扰的影响。数值仿真和实测数据处理结果表明了该方法的可行性。 According to the characteristic that short-time strong disturbance in signals can lead to obvious abnormity in instantaneous amplitudes and frequencies,an HHT-based method to eliminate the disturbance is proposed.The signal with short-time strong disturbance is decomposed into a series of Intrinsic Mode Function(sIMF)and a residue by the Empirical Mode Decomposition(EMD).The instantaneous amplitudes and frequencies of each IMF are calculated.In abnormal sections,they are fitted according to the data in nor-mal sections,replacing the original ones with the fitted data.A new set of IMF is reconstructed by using the processed instantaneous amplitudes and frequencies.For the residue,abnormal fluctuations are directly removed.A new signal with the short-time strong disturbance eliminated is reconstructed by superposing all the new IMF and the residue.Results of numerical simulation and measured signal verify the feasibility of the method.
出处 《计算机工程与应用》 CSCD 2012年第5期131-134,共4页 Computer Engineering and Applications
基金 贵州大学人才引进科研项目(No.2008028)
关键词 短时强干扰 HILBERT-HUANG变换 经验模态分解 瞬时振幅 瞬时频率 short-time strong disturbance Hilbert-Huang transform empirical mode decomposition instantaneous amplitude instanta-neous frequency
  • 相关文献

参考文献3

二级参考文献79

  • 1李强,王太勇,胥永刚,冷永刚.EMD-循环域解调方法在故障诊断中的应用[J].振动与冲击,2006,25(4):34-37. 被引量:12
  • 2Dragotti P L and Vetterli M. Wavelet footprints: theory,algorithms, and applications [J]. J. Amer. Statist. Assoc.,2003, 51(5): 1306-1323.
  • 3Johnstone I M and Silverman B W. Wavelet threshold estimators for data with correlated noise [J]. J. Royal Statistical Society B, 1997, 59(2): 319-351.
  • 4Jansen M and Bultheel A. Multiple wavelet threshold estimation bY generalized cross validation for data with correlated noise [J], IEEE Trans. on Image Proc,, 1999, 8(7):947-953.
  • 5Baduleseu P and Zaciu R. Removal of mixed-noise using order statistic filter and wavelet domain Wiener filter [A].Proceedings of the International Semiconductor Conference[C]. Sinaia Romania, 1999: 301-304.
  • 6Coifman R R and Donoho D L. Translation-invariant de-noising [A]. Wavelets in Statistics of Lecture Notes instatistics 103[C]. New York: Springer-Verlag, 1994:125-150.
  • 7Arne Kovac. Wavelet thresholding for unequally spaced data[D], Ph.D. Thesis, Faculty of Science, University of Bristol,1998.
  • 8Vanraes E, Jansen M, and Bultheel A. Stabilized wavelet transforms for non-equispaced data smoothing [J]. Signal Processing, 2002, 82(12): 1979-1990.
  • 9Malfait M and Roose D. Wavelet-based image denoising using a Markov random field a priori model [J]. IEEE Trans.on Imgae Proc., 1997, 6(4): 549-565.
  • 10Shark L K and Yu C. Denoising by optimal fuzzy thresholding in wavelet domain [J]. Electronics Letters, 2000,36(6): 581-582.

共引文献121

同被引文献14

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部