期刊文献+

基于多目标混沌粒子群算法的矿区电网无功优化 被引量:3

Reactive Power Optimization of Mining Area Power Grid Based on Multi-Objective Chaotic Particle Swarm Algorithm
下载PDF
导出
摘要 为了提高矿区电网电能质量,降低电网线路有功网损,在无功优化基本数学模型的基础上,综合系统电压的静态稳定性,建立了多目标无功优化数学模型。针对粒子群优化算法在进化中易出现早熟收敛等问题,引入混沌粒子群优化算法。以IEEE30节点系统为算例,验证了多目标混沌粒子群算法的可行性。将该算法应用于矿区电网无功优化中,仿真结果进一步验证了该算法的有效性。 In order to improve the electrical energy quality of mining area power grid and reduce active power loss of power grid line, on the basis of basic model of reactive power optimization, combining the static stability of system voltage, a multi-objective reactive power optimization mathematical model was established. Aiming at the problems that the particle swarm optimization algorithm in evolution is easy to occur premature convergence, the chaotic particle swarm optimization algorithm was introduced. An IEEE 30 node system was taken as an example to verify the multi-objective chaotic particle swarm algorithm' s feasibility. The algorithm was applied to the reactive power optimization of mining power grid, and the simulation results verified the algorithm' s effectiveness.
作者 吴璇 王建
出处 《低压电器》 北大核心 2011年第20期40-42,共3页 Low Voltage Apparatus
关键词 矿区电网 无功优化 混沌粒子群优化算法 多目标优化模型 mining power grid reactive power optimization chaotic particle swarm optimization al-gorithm multi-objective optimization model
  • 相关文献

参考文献2

  • 1高鹰,谢胜利.混沌粒子群优化算法[J].计算机科学,2004,31(8):13-15. 被引量:104
  • 2SHI Y H, EBERHART R. Empirical study of particle swarm optimization[ C] //Proceedings of the IEEE 190Congress on Evolutionary Computation ( CEC 1999 ). New Jersey : IEEE Press 1999,1945-1950.

二级参考文献16

  • 1王东升 曹磊.混沌、分形及其应用[M].合肥:中国科学技术大学出版社,1995..
  • 2Kennedy J,et al. Particle swarm optimization. In: IEEE Int'lConf. on Neural Networks. Perth,Australia, 1995. 1942- 1948
  • 3Eberhart R,Kennedy J. A new optimizer using particle swarm theory. In: Proc. of the sixth intl. symposium on Micro Machine and Human Science, Nagoya ,Japan, 1995. 39-43
  • 4Shi Y,et al. A modified particle swarm optimizer [C]. In: IEEE World Congress on Computational Intelligence, 1998.69-73
  • 5Shi Y,Eberhart R C. Fuzzy Adaptive particle swarm optimization [C]. In: Proc. of the Congress on Evolutionary Computation,Seoul Korea, 2001
  • 6Clerc M. The swarm and the Queen: Towards a deterministic and adaptive particle swarm optimization[C]. In: Proc. of the Congress of Evolutionary Computation, 1999. 1951-1957
  • 7Lovbjerg M,Rasmussen T K, Krink T. Hybrid particle swarm optimization with breeding and subpopulations[C]. In: Proc. of the third Genetic and Evolutionary computation conf. San Francisco,USA,2001
  • 8Higasshi N, Iba H. Particle swarm optimization with Gaussian mutation [C]. In: Proc. of the Congress on Evolutionary Computation,2003. 72-79
  • 9Van den Bergh F,Engelbrecht A P. Training product unit networks using cooperative particle swarm optimizers[C]. In: Proc.of the third Genetic and Evolutionary computation conf. San Francisco ,USA, 2001
  • 10Van den Bergh F,Engelbrecht A P. Effects of swarm size cooperative particle swarm optimizers [C]. In: Proc. of the third Genetic and Evolutionary computation conf. San Francisco, USA, 2001

共引文献103

同被引文献33

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部