期刊文献+

基于蚁群算法的普通话测试系统评分机制改进 被引量:2

An Improvement of the Scoring Mechanism of Mandarin Testing System Based on ACO
下载PDF
导出
摘要 在分析现有国家计算机辅助普通话水平测试系统评分机制特点和原理的基础上,提出了一种使用蚁群算法对评分系统里评价模型进行优化的方法.实验结果表明,蚁群算法克服了传统归一化算法收敛慢、计算量大等缺点,它可以准确的估计评价模型向量并且不会产生局部相位的波形恶化,使得各处向量的功率谱有明显的增益.改进后的评价模型能对语音信号进行良好的识别,具有良好的通用性和全局性. A new method using ACO to optimize the evaluation model of scoring mechanism was proposed based on an analysis of the characteristics and working principle of the scoring mechanism of the present computer-assisted Madarin test.The experiment result indicates that the ACO algorithm does not have the drawbacks of traditional normalization algorithm such as slow convergence and large amount of calculation;it can accurately estimate the vector and the evaluation phase of the wave without producing localized deterioration,and make the power spectrum of vectors gain remarkably.The improved model,with good versatility and generality,can identify the speech signal clearly.
作者 李超 刘涛
出处 《玉溪师范学院学报》 2011年第8期59-62,共4页 Journal of Yuxi Normal University
关键词 普通话测试 评分机制 评价模型 蚁群算法 Mandarin test scoring mechanism evaluation model ACO
  • 相关文献

参考文献4

  • 1张记会 高奇圣 徐心和.一种新的自适应蚁群算法及仿真.控制论与应用,2003,:93-98.
  • 2李超.基于蚁群算法的TD-SCDMA智能天线模式设计[R].硕士毕业论文,2010:89-90.
  • 3Yuhui Shi, Russel C. Eberhart. Empirical study of particle swarm optimization[A]. Proc of the Congress on Evolutionary Computation[C]. Washington DC, 2001:81-86.
  • 4李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398

二级参考文献8

  • 1Kennedy J, Eberhart R. Particle swarm optimization [A]. Proc of Int'l Conf on Neural Networks [C]. Piscataway: IEEE Press, 1995. 1942-1948.
  • 2Eberhart R, Kennedy J. A new optimizer using particle swarm theory [A]. Proc of Int'l Symposium on Micro Machine and Human Science [C]. Piscataway: IEEE Service Center, 1995. 39-43.
  • 3Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization [A].In: Furuhashi T,Mckay B,eds. Proc Congress on Evolutionary Computation [C]. Piscataway: IEEE Press, 2001.
  • 4Lovbjerg M, Rasmussen T K, Krink T. Hybrid particle swarm optimiser with breeding and subpopulations [A]. In: Spector L,eds. Proc of Genetic and Evolutionary Computation Conference [C]. San Fransisco: Morgan Kaufmann Publishers Inc, 2001. 469-476.
  • 5Carlisle A, Dozier G. Adapting particle swarm optimization to dynamic environments [A]. In: Arabnia H R,eds. Proc of Int'l Conf on Artificial Intelligence [C]. Las Vegas: CSREA Press, 2000. 429-434.
  • 6Parsopoulos K E, Vrahatis M N. Particle swarm optimization method in multiobjective problems [A]. In: Panda B,eds. Proc of ACM Symposium on Applied Computing [C]. Boston: ACM Press, 2002. 603-607.
  • 7Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space [J]. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58-73.
  • 8李爱国,覃征,鲍复民,贺升平.粒子群优化算法[J].计算机工程与应用,2002,38(21):1-3. 被引量:307

共引文献397

同被引文献6

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部