期刊文献+

一种多项指标全提升的多目标优化演化算法 被引量:1

A Multi-Objective Optimization Evolutionary Algorithm with Multiple Indicators Enhanced
下载PDF
导出
摘要 针对当前大部分多目标优化演化算法设计复杂、耗时巨大,以及取得的近似Pareto前沿点不够多、分布不均匀、覆盖不完整等问题,提出了一种新的基于粒子群和几何Pareto选择算法的多目标优化PSGPS算法.经过5个测试问题的实验结果表明:该算法使用较低的时间消耗,就能在前沿点个数、前沿点分布均匀性、覆盖完整度等性能指标上都优于当前流行的NSGA2,SPEA2和PESA等多目标优化演化算法. Currently,most of multi-objective optimization evolutionary algorithms are complex and time-consuming.At the same time,the approximate Pareto fronts of these algorithms may not have enough points,with uneven in distribution and incomplete coverage.This paper presents a new multi-objective optimization evolutionary algorithm,which is based on Particle Swarm Optimization algorithm and Geometric Pareto selection algorithm.The experimental results on five widely used test-problems show that the performance indicators,including the numbers of front points,the uniformity,the complete of coverage and so on,are better than the compared popular multi-objective optimization algorithms: NSGA2,SPEA2,PESA etc.with satisfactory time consuming
出处 《中南民族大学学报(自然科学版)》 CAS 2011年第3期89-93,共5页 Journal of South-Central University for Nationalities:Natural Science Edition
基金 国家自然科学基金资助项目(60803095)
关键词 演化算法 多目标优化 粒子群优化 evolutionary algorithm multi-objective optimization particle swarm optimization
  • 相关文献

参考文献5

  • 1Michalewicz. Genetic algorithm + Data structure =evolutionary programs [ M ]. 3rd rev and extended. Berlin: Springer-Verlag, 1997 : 372-373.
  • 2Zheng B. A highly efficient multi-objective optimization evolutionary algorithm [ C ]//ICNC. Proceedings-Third International Conference on Natural Computation. Jinan: ICNC, 2007: 549-554.
  • 3周育人,闵华清,许孝元,李元香.多目标演化算法的收敛性研究[J].计算机学报,2004,27(10):1415-1421. 被引量:14
  • 4Eberhart R , Kennedy J. A new optimizer using particle swarm theory [ C ]//ISMMHS. Proceedings of the Sixth International Symposium on Micro Machine and Human Science. Nagoya: ISMMHS, 1995 : 39-43.
  • 5Jensen M T. Reducing the run-time complexity of multi- objective EAs: the NSGA-II and other algorithms [ J ]. Evolutionary Computation, 2003, 7 ( 5 ) : 503-515.

二级参考文献22

  • 1Goldberg D. E.. Genetic Algorithms for Search, Optimization,and Machine Learning. MA: Addison-Wesley, 1989
  • 2Srinivas N. , Deb K.. Multi-objective function optimization use non-dominated genetic algorithms. Evolutionary Computation,1994, 2(3): 221~248
  • 3Zitzler E. , Thiele L.. Multiobjective evolutionary algorithms:A comparative case study and the strength Pareto approach.IEEE Transactions on Evolutionary Computation, 1999, 3 (4):257~271
  • 4Knowles J. D. ,Corne D. W.. Approximating the nondominated front using the Pareto archived evolution strategy. Evolutionary Computation, 2000, 8(2), 149~172
  • 5Deb K. , Agrawal S. , Pratap A. , Meyarivan T.. A fast and elitist multi-objective genetic algorithms: NSGA-Ⅱ. IEEE Transactions on Evolutionary Computation, 2002, 6 (2) : 182~197
  • 6Rudolph G.. On a multi-objective evolutionary algorithm and its convergence to the Pareto set. In: Proceedings of the 15th IEEE Conference Evolutionary Computation, Anchorage AK,1998, 511~516
  • 7Rudolph G., Agapie A.. Convergence properties of some multi-objective evolutionary algorithms. In: Proceedings of the 2000 Congress on Evolutionary Computation (CEC2000), Piscataway, NJ, 2000, 1010~1016
  • 8Hanne Thomas. On the convergence of multiobjective evolutionary algorithms. European Journal of Operational Research,1999, 117(3): 553~564
  • 9Laumanns M. , Thiele L. , Deb K. , Zitzler E.. Combining convergence and diversity in evolutionary multi-objective optimization. Evolutionary Computation, 2002, 10(3): 263~282
  • 10Zitzler E. , Thiele L. , Laumanns M. , Fonseca C. M.. V Grunert da Fonseca. Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolutionary Computation, 2003, 7(2): 117~132

共引文献13

同被引文献11

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部