期刊文献+

Fabrication of Large Area High Density, Ultra-Low Reflection Silicon Nanowire Arrays for Efficient Solar Cell Applications 被引量:6

Fabrication of Large Area High Density, Ultra-Low Reflection Silicon Nanowire Arrays for Efficient Solar Cell Applications
原文传递
导出
摘要 垂直地排列的高密度和硅 nanowire (SiNW ) 穿的高方面比率用一个模板和催化蚀刻进程在 Si 底层上被制作了。模板从聚苯乙烯(PS ) 被形成有直径 3050 nm 和密度 1010/cm2 的 nanospheres,由包含 PS 块共聚物的 nanophase 分离生产了。SiNWs 的长度被与 12.5 nm/s 的蚀刻的率改变蚀刻的时间控制。SiNWs 与一个高方面有 biomimetic 结构比率(100 ) ,高密度,和展览极端低的反射。约 0.1% 的极端低的反射比 750 nm 长为 SiNWs 被完成。排列得好的 SiNW/poly (3,4-ethylenedioxy-thiophene ): poly (styrenesulfonate )(PEDOT : PSS ) 异质接面太阳能电池被制作。n 类型硅 nanowire 表面遵守了 PEDOT : 通过一个简单、有效的答案过程形成核心鞘异质接面结构的 PSS。SiNWs 的大表面区域保证了 photogenerated 搬运人的有效收集。没有 nanowire 结构,比作平面房间, SiNW/PEDOT : PSS 异质接面太阳能电池从 0.4% ~ 5.7% 在功率变换效率从 2.35 mA/cm2 在电线走火电流密度展出了增加到 21.1 mA/cm2 和改进。 High density vertically aligned and high aspect ratio silicon nanowire (SiNW) arrays have been fabricated on a Si substrate using a template and a catalytic etching process. The template was formed from polystyrene (PS) nanospheres with diameter 30-50 nm and density 10^10/cm^2, produced by nanophase separation of PS-containing block-copolymers. The length of the SiNWs was controlled by varying the etching time with an etching rate of 12.5 nm/s. The SiNWs have a biomimetic structure with a high aspect ratio (-100), high density, and exhibit ultra-low reflectance. An ultra-low reflectance of approximately 0.1% was achieved for SiNWs longer than 750 nm. Well-aligned SiNW/poly(3,4-ethylenedioxy-thiophene):poly(styrenesulfonate) (PEDOT:PSS) heterojunction solar cells were fabricated. The n-type silicon nanowire surfaces adhered to PEDOT:PSS to form a core-sheath heterojunction structure through a simple and efficient solution process. The large surface area of the SiNWs ensured efficient collection of photogenerated carriers. Compared to planar cells without the nanowire structure, the SiNW/PEDOT:PSS heterojunction solar cell exhibited an increase in short-circuit current density from 2.35 mA/cm^2 to 21.1 mA/cm^2 and improvement in power conversion efficiency from 0.4% to 5.7%.
出处 《Nano Research》 SCIE EI CAS CSCD 2011年第11期1136-1143,共8页 纳米研究(英文版)
关键词 硅纳米线阵列 高效太阳能电池 高密度 低反射 面积 PEDOT 制造 应用 Ultra-low reflection, silicon nanowire, polystyrene nanosphere, heterojunction solar cell
  • 相关文献

同被引文献34

  • 1Zhao J H,Wang A H,Green M A,Ferrazza F. 19.8% Efficient "Hon- eycomb" Textured Muhicrystalline and 24.4% Monocrystalline Silicon Solar Cells[ J. Appl. Phys. Lett. 1998,73 : 1991-1993.
  • 2Vazsonyi E, Clercq K D, Einhaus R, et al. Improved Anisotropic Etching Process for Industrial Texturing of Silicon Solar Cells[ J]. Sol. Energy Mater. Sol. Cells. 1999,57:179-188.
  • 3Remache L, Fourmond E, Mahdjoub A, et al. Design of Porous Silicon/PECVD SiO Antireflection Coatings for Silicon Solar Ceils [ J ]. Materials Science and Engineering B. 2011,176:45-48.
  • 4Ramizy A, Hassan Z, Omar K, et al. New Optical Features toEnhance Solar Cell Performance Based on Porous Silicon Surfaces [ J]. Applied Surface Science,2011,257 (14) :6112-6117.
  • 5Osorio E,Urteaga R, Acquaroli L N, et al. Optimization of Porous Silicon Muhilayer as Antireflection Coatings for Solar Ceils[ J]. Sol Energy Mater Sol Cells,2011,95:3069-3073.
  • 6Lii H J, Shen H L, Jiang Y, et al. Porous-Pyramids Structured Silicon Surface with Low Reflectance over a Broad Band by Elec- trochemical Etching[ J ]. Applied Surface Science,2012,258:5451 -5454.
  • 7Chartier C, Bastide S, Levy-Clement C. Metal-Assisted Chemical Etching of Silicon in HF-H202 [ J ]. Electrochemica Acta, 2008, 53 : 5509 -5516.
  • 8Her T H, Finlay R J, Wu C, et al. Microstructuring of Silicon with Femtosecond Laser Pulses [ J ]. Applied Physics Letters, 1998,73 ( 12 ) : 1637-1675.
  • 9Yoo J S, Yu G J, Yi J S. Large-Area Multicrystalline Silicon Solar Cell Fabrication Using Reactive Ion Etching (RIE) [ J ]. Solar Energy Materials & Solar Cells,2011,95:2-6.
  • 10Xiao J F, Wang L, Li X Q, et al. Reflectivity of Porous-Pyramids Structured Silicon Surface [ J ]. Applied Surface Science, 2010, 257:472-475.

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部