期刊文献+

一种家居监控机器人的角及平直线段匹配的组合定位方法

A Hybrid Localization Method for Family Indoor Monitor Mobile Robot Based on Corner and Straight line Matching
下载PDF
导出
摘要 针对移动机器人家居环境下的定位问题,提出了一种结合平直线段匹配、角匹配和里程计的组合定位方法。该系统采用了Labview开发平台和CompactRIO控制器,得到了很好的实时性效果。机器人通过激光测距仪基于TCP/IP通讯协议得到环境点信息,由迭代适应点(Iterative End Point Fit,IEPF)算法得到环境线段,再由最小二乘法得到线段参数。在基于线段基础上,得到局部的平直线段和角特征,再与已知平直线段和角特征做匹配,通过平直线段和角匹配算法实时更新机器人位置和姿态。分析里程计定位、平直线段匹配定位和角匹配定位的误差,分配不同的权重得到优化的组合定位算法。实验表明:该组合定位算法定位稳定,位置误差在50mm以内,角度偏差5°以内,循环的周期在120ms以内。 The hybrid localization method of straight line is proposed to resolve the difficult localization problems of environment. The system is implemented using National matching, corner matching and odometer mobile Instrut robot operating in family indoor ment Labview platform to satisfied real time performance with CompactRIO support. Robot detects environment using a 2D range finder with TCP/IP protocol. Line feature extraction process include area divided, iterativ point fit (IEPF)and a least square technique is introduced. Based on line feature, straight line corners and geometry features are obtained. The detected straight lines and corners are matched the global straight lines localization algorithm, discussed. Different wei gain laser e end s and with and corners to obtain the robot position and orientation value. The odometer straight line localization ght values are distributed algorithm and corner localization to straight lines, corner and odomet algorithm are ry according tothe error model. As a result stable localization is achieved with position 50 ram, 5 degree. A good performance for the method is also achieved and orientation resolution as with cycle time as 120 ms.Experiment shows the effectiveness of the hybrid localization method.
出处 《上海电气技术》 2011年第1期41-48,共8页 Journal of Shanghai Electric Technology
关键词 平直线段匹配 角匹配 定位 里程计 straight line matching corner matching localization odometer
  • 相关文献

参考文献4

二级参考文献22

  • 1Tardos J D, Neira J, Newman P, et al. Robust mapping and localization in indoor environments using sonar data[J]. The International Journal of Robotics Research, 2002, 21(4): 311-330.
  • 2Guivant J, Nebot E, Balker S. Localization and map building using laser range sensors in outdoor applications[J]. Journal of Robotic Systems, 2000, 17(10): 565-583.
  • 3Se S, Lowe D G, Little J J. Vision-based global localization and mapping for mobile robots[J]. IEEE Transactions on Robotics,2005, 21(3): 364-375.
  • 4Davison A J. Real-time simultaneous localisation and mapping with a single camera[A]. Proceedings of the IEEE International Conference on Computer Vision[C]. Piscataway, NJ, USA: IEEE, 2003. 1403-1410.
  • 5Ishiguro H. Development of low-cost compact omnidirectional vision sensors and their applications[DB/OL]. http://www.ai.soc.i.kyoto-u.ac.jp/publications/98/98conf04.pdf, 1998.
  • 6Bunschoten R. Mapping and Localization from a Panoramic Vision Sensor[DB/OL]. http ://www. science.uva, nl/research/ias/alumni/ph. d.theses/theses/RolandBunschoten.pdf, 2003.
  • 7Andreasson H, Treptow A, Ducker T. Localization for mobile robots using panoramic vision, local features and particle filter[A]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. Piscataway, NJ, USA: IEEE, 2005. 3348-3353.
  • 8Durrant-Whyte H, Bailey T. Simultaneous localization and mapping: Part Ⅰ[J]. IEEE Robotics and Automation Magazine, 2006, 13(2): 99-110.
  • 9Dissanayake M W M G, Newman P, Clark S, et al. A solution to the simultaneous localization and map building (SLAM) problem[J]. IEEE Transactions on Robotics and Automation, 2001, 17(3): 229-241.
  • 10Zivkovic Z, Booij O. How did we built our hyperbolic mirror omnidirectional camera-practical issues and basic geometry[DB/OL]. http://staff.science.uva.nl/-zivkovic/Publications/trlAS-UVA-05- 04.pdf, 2005.

共引文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部