期刊文献+

基于α-优势关系的区间值概率粗集模型及应用

Interval-valued probability rough set model based on α-dominance relation and their application
下载PDF
导出
摘要 区间值序信息系统是单值序信息系统的一种扩充。首先在区间值序信息系统中引出一种新的定义属性对象xj优于xi的概率Pjai,进而在此基础定义α-优势关系和优势类,从而定义了一种新的基于α-优势关系的概率粗糙集模型,继而通过相对熵赋权得到多属性决策问题的综合评价的最优解,最后对皖江城市带的经济发展的5年数据做定量分析,该实例有效地证明了该方法的合理性和科学性。 The interval-valued order information system is a generalized model of a single-valued order information system. At first, a novel definition is introduced based on the interval-valued order information system by defining pya which shows the probability of attribute object xj superior to object zz, and then α-dominance relation and dominance class are defined. So a novel probability rough set modal based on α-dominance relation is constructed. Furthermore, the optimal solution in multiple attributes making-decision has been obtained through the weights which are given by relative entropy. Finally, quantitative analysis of five years data for economic development issue of the cities along the Yangtze River in Anhui province has been made, and then the effectiveness and rationality of the above method are verified.
出处 《阜阳师范学院学报(自然科学版)》 2011年第3期1-5,共5页 Journal of Fuyang Normal University(Natural Science)
基金 国家自然科学基金项目(61073117) 安徽大学学术创新团队(KJTD001B) 安徽高等学校青年基金项目(2011SQRL186)资助
关键词 区间值序信息系统 α-优势关系 粗糙集 相对熵 定量分析 interval-valued order information system α-dominance relation rough set relative entropy quantitative analysis.
  • 相关文献

参考文献8

  • 1Qian Y H, Liang J Y, Dang C Y. Interval ordered in- formation systems [ J ]. Computers and Mathematics with Applications, 2008, 56(8): 1994-2009.
  • 2Dembezynski K, Greco S, Slowinski R. Second-order rough approximations in multi-criteria classification with imprecise evaluations and assignments [ J ]. Lecture Notes in Computer Science,2005 (3641) : 52-95.
  • 3Dembczynski K, Greco S, Slowinski R. Rough set ap- proach to multiple criteria classification with imprecise evaluations and assignments [ J ]. European Journal of Operational Research,2009, 198(2) : 626-636.
  • 4Yang X B, Yu D J, Yang J Y, et al. Dominance-based rough set approach to incomplete interval-valued fuzzy information systems [ J ]. Data & Knowledge, Engineer- ing, 2009, 68(11): 1331-1347.
  • 5Gong Z T, Sun B Z, Chen D G. Rough set theory for interval-valued fuzzy information systems [ J ]. Informa- tion Sciences, 2008, 178(8): 1968-1985.
  • 6杨青山,王国胤,张清华,马希骜.基于优势关系的区间值粗糙集扩充模型[J].山东大学学报(理学版),2010,45(9):7-13. 被引量:19
  • 7张文修,梁怡,吴志伟.信息系统和知识发现[M].北京:北京科学出版社,2003:31-65.
  • 8Cover T M,Thomas J A,阮吉寿,等.信息论基础[M].北京:机械工业出版社,2005.348-354.

二级参考文献18

  • 1PAWLAK Z. Rough sets [ J ]. International Journal of Computer and Information Science, 1982,, 11 (5),:341-356.
  • 2ZENG A, PAN D, ZHENG Q L, et al. Knowledge acquisition based on Rough set theory and principal component analysis [ J ]. IEEE Intelligent Systems, 2006, 21 (2) :78-85.
  • 3LEUNG Y, FISCHER M M, WU W Z, et al. A Rough set approach for the discovery of classification rules in interval-valued information systems [J ]. International Journal of Approximate Reasoning, 2008, 47 (2) : 233-246.
  • 4GRECO S, MATARAZZO B, SLOWI NSKI R. Rough sets theory for multicriteria decision analysis [J]. European Journal of Operational Research, 2001, 129( 1 ) :1-47.
  • 5JENSEN R, SHEN Q. Interval-valued fuzzy-Rough feature selection in datasets with missing values E C ]//Proceedings of the 18th IEEE International Conference on Fuzzy Systems. Korea: IEEE, 2009.
  • 6YAMAGUCHI D, LI G D, NAGAI M. A grey-based Rough approximation model for interval data processing [ J ]. Informa- tion Sciences, 2007, 177(21 ) :4727-4744.
  • 7REBOLLEDO M, Rough intervals-enhancing intervals for qualitative modeling of technical systems E J ]. Artificial Intelligence, 2006, 170(8-9) :667-685.
  • 8QIAN Y H, LIANG J Y, DANG C Y. Interval ordered information systems [J]. Computers and Mathematics with Applications, 2008, 56 (8) : 1994-2009.
  • 9DEMBCZYNSKI K, GRECO S, SLOWINSKI R. Second-order Rough approximations in multi-criteria classification with imprecise evaluations and assignments [ M ]//Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. Berlin: Springer, 2005.
  • 10DEMBCZYNSKI K, GRECO S, SLOWINSKI R. Rough set approach to multiple criteria classification with imprecise evaluations and assignments [J]. European Journal of Operational Research, 2009, 198 (2) :626-636.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部