期刊文献+

Bifurcations and chaotic threshold for a nonlinear system with an irrational restoring force 被引量:2

Bifurcations and chaotic threshold for a nonlinear system with an irrational restoring force
下载PDF
导出
摘要 Nonlinear dynamical systems with an irrational restoring force often occur in both science and engineering, and always lead to a barrier for conventional nonlinear techniques. In this paper, we have investigated the global bifurcations and the chaos directly for a nonlinear system with irrational nonlinearity avoiding the conventional Taylor's expansion to retain the natural characteristics of the system. A series of transformations are proposed to convert the homoclinic orbits of the unperturbed system to the heteroclinic orbits in the new coordinate, which can be transformed back to the analytical expressions of the homoclinic orbits. Melnikov's method is employed to obtain the criteria for chaotic motion, which implies that the existence of homoclinic orbits to chaos arose from the breaking of homoclinic orbits under the perturbation of damping and external forcing. The efficiency of the criteria for chaotic motion obtained in this paper is verified via bifurcation diagrams, Lyapunov exponents, and numerical simulations. It is worthwhile noting that our study is an attempt to make a step toward the solution of the problem proposed by Cao Q J et al. (Cao Q J, Wiercigroch M, Pavlovskaia E E, Thompson J M T and Grebogi C 2008 Phil. Trans. R. Soe. A 366 635). Nonlinear dynamical systems with an irrational restoring force often occur in both science and engineering, and always lead to a barrier for conventional nonlinear techniques. In this paper, we have investigated the global bifurcations and the chaos directly for a nonlinear system with irrational nonlinearity avoiding the conventional Taylor's expansion to retain the natural characteristics of the system. A series of transformations are proposed to convert the homoclinic orbits of the unperturbed system to the heteroclinic orbits in the new coordinate, which can be transformed back to the analytical expressions of the homoclinic orbits. Melnikov's method is employed to obtain the criteria for chaotic motion, which implies that the existence of homoclinic orbits to chaos arose from the breaking of homoclinic orbits under the perturbation of damping and external forcing. The efficiency of the criteria for chaotic motion obtained in this paper is verified via bifurcation diagrams, Lyapunov exponents, and numerical simulations. It is worthwhile noting that our study is an attempt to make a step toward the solution of the problem proposed by Cao Q J et al. (Cao Q J, Wiercigroch M, Pavlovskaia E E, Thompson J M T and Grebogi C 2008 Phil. Trans. R. Soe. A 366 635).
作者 Tian Rui-Lan Yang Xin-Wei Cao Qing-Jie Wu Qi-Liang 田瑞兰;杨新伟;曹庆杰;吴启亮(Department of Mathematics and Physics,Shijiazhuang Tiedao University,Shijiazhuang 050043,China;School of Traffic,Shijiazhuang Institute of Railway Technology,Shijiazhuang 050041,China;School of Astronautics,Harbin Institute of Technology,Harbin 150001,China)
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第2期136-147,共12页 中国物理B(英文版)
基金 supported by the National Natural Science Foundation of China (Grant Nos.11002093,11072065,and 10872136) the Science Foundation of the Science and Technology Department of Hebei Province of China (Grant No.11215643)
关键词 nonlinear dynamical system Melnikov boundary irrational restoring force saddle-likesingularity homoclinic-like orbit nonlinear dynamical system, Melnikov boundary, irrational restoring force, saddle-likesingularity, homoclinic-like orbit
  • 相关文献

参考文献28

  • 1Cao Q J, Wiercigroch M, Pavlovskaia E E, Thompson J M T and Grebogi C 2008 Phil. TraT~s. R. Soc. A 366 635.
  • 2Lai S K and Xiang Y 2010 Comput. Math. Appl. 60 2078.
  • 3Tufillaro N B, Abbott T and Reilly J 1992 An Experimen- tal Approach to Nonlinear Dynamics and Chaos (Boston: Addison-Wesley).
  • 4Gimeno E, Alvarez M L, Yebra M S J, Herranz Rosa and Bel~ndez A 2009 Int. J. Nonlinear Sci. Numer. Simul. 10 493.
  • 5Mickens R E 1996 Oscillations in Planar Dynamic Sys- tems (Singapore: World Scientific).
  • 6Sun W P, Wu B S and Lim C W 2007 J. Sound Vib. 300 1042.
  • 7Cao Q J, Xiong Y P and Wiercigroch M 2011 J. Appl. Anal. Comput. 1 183.
  • 8Cao Q J, Wiercigroch M, Pavlovskaia E E, Grebogi C and Thompson J M T 2006 Phys. Rev. E 74 046218.
  • 9Cao Q J, Wiercigroch M, Pavlovskaia E E, Grebogi C and Thompson J M T 2008 Int. J. Nonlinear Mech. 43 462.
  • 10Tian R L, Cao Q J and Yang S P 2010 Nonlinear Dyn. 59 19.

同被引文献15

  • 1曹庆杰,Wiercigroch M,Pavlovskaia E E,Grebogi C,Thompson M T.SD振子,SD吸引子及其应用[J].振动工程学报,2007,20(5):454-458. 被引量:9
  • 2曹庆杰,Marian Wiercigroch,Ekaterina Pavlovskaia,Celso Grebogi,J.M.T.Thompson.SD振子、吸引子的转迁过程及其特性[J].科技导报,2007,25(23):33-37. 被引量:1
  • 3CaoQJ,WiercigrochM,PavlovskaiaE,etal.Archetypaloscillatorforsmoothanddiscontinuousdynamics[J].PhysicalRe-viewE.,2006,74(4):046218(1-5).
  • 4CaoQJ,WiercigrochM,PavlovskaiaE,Piecewiselinearapproachtoanarchetypaloscillatorforsmoothanddiscontinuousdy-namics[J].PhilosophicalTransactionsoftheRoyalSocietyA,2008,366(1865):635-652.
  • 5CaoQJ,WiercigrochM,PavlovskaiaE,etal.Thelimitcaseresponseofthearchetypaloscillatorforsmoothanddiscontinuousdynamics[J].InternationalJournalofnonlinearMechanics,2008,43(6):462-473.
  • 6TianRL,CaoQJ,YangSP.Thecodimension-twobifurcationfortherecentproposedSDoscillator[J].NonlinearDynamics,2010,59(1-2):19-27.
  • 7HanN,CaoQJ,WiercigrochM,Estimationofthechaoticthresholdsfortherecentlyproposedrotatingpendulum[J].Inter-nationalJournalofBifurcationandChaos,2013,23:1350074(1-22).
  • 8田瑞兰,曹庆杰,李志新.Hopf Bifurcations for the Recently Proposed Smooth-and-Discontinuous Oscillator[J].Chinese Physics Letters,2010,27(7):172-175. 被引量:9
  • 9曹庆杰,田瑞兰,韩彦伟.SD振子的非线性动力学特征研究[J].石家庄铁道大学学报(自然科学版),2010,23(2):32-37. 被引量:3
  • 10景荣春.四次方程解法改进[J].镇江船舶学院学报,1990,4(4):79-84. 被引量:1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部