摘要
Motivated by the discovery of a new family of 122 iron-based superconductors, we present the theoretical results on the ground state phase diagram, spin wave, and dynamic structure factor obtained from the extended J1-J2 Heisenberg model. In the reasonable physical parameter region of K2Fe4Se5, we find that the block checkerboard antiferromagnetic order phase is stable. There are two acoustic spin wave branches and six optical spin wave branches in the block checker- board antiferromagnetic phase, which have analytic expressions at the high-symmetry points. To further compare the experimental data on neutron scattering, we investigate the saddlepoint structure of the magnetic excitation spectrum and the inelastic neutron scattering pattern based on linear spin wave theory.
Motivated by the discovery of a new family of 122 iron-based superconductors, we present the theoretical results on the ground state phase diagram, spin wave, and dynamic structure factor obtained from the extended J1-J2 Heisenberg model. In the reasonable physical parameter region of K2Fe4Se5, we find that the block checkerboard antiferromagnetic order phase is stable. There are two acoustic spin wave branches and six optical spin wave branches in the block checker- board antiferromagnetic phase, which have analytic expressions at the high-symmetry points. To further compare the experimental data on neutron scattering, we investigate the saddlepoint structure of the magnetic excitation spectrum and the inelastic neutron scattering pattern based on linear spin wave theory.
作者
Lu Feng
Dai Xi
卢峰;戴希(Beijing National Laboratory for Condensed Matter Physics,and Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China)
基金
supported by the Science Foundation for Post-Doctorate Research from the Ministry of Science and Technology of China (Grant No.20100470589)
the National Basic Research Program of China (Grant No.2007CB925000)
the National Natural Science Foundation of China (Grant No.51071032)