期刊文献+

立磨选粉机导流圈的数值模拟与分析 被引量:12

Numerical simulation and analysis on diversion circle of vertical mill classifier
下载PDF
导出
摘要 为解决立磨改造中进入选粉机分级室气流速度过低的现象,设计了一种用于提升气流速度的导流圈.采用RNGk-ε湍流模型和DPM模型分别对立磨选粉机的气相流场和气固两相流场进行了数值模拟研究,对比分析了不同导流圈α角下的速度、压力分布云图和颗粒运行轨迹.模拟发现,导流圈α角过大,会限制进入选粉机分级室的气流速度;α角过小,则将增大立磨选粉机的压阻.结果表明:α角为60°时,大部分颗粒能够被迅速提升至分级室,同时选粉机自身的压阻也相对较小,细粉在选粉机内的停留时间较短,选粉机具有最高的分级效率.试验结果和工程应用表明,导流圈的设计有效提升了立磨选粉机的性能和产量. In order to improve the velocity of airflow into grading room,a diversion circle is designed in vertical mill modification.The RNG k—ε turbulent model and DPM model are applied to carry out air-solid two-phase numerical simulation in the vertical mill classifier.The contour of gas-phase velocity,pressure and the particle trajectory are compared and analyzed as the angle α of diversion circle varies.Simulation results show that the velocity of airflow is limited under large value of α,while the pressure drop of classifier increases under small value of α.It is also shown that the classifier has the highest efficiency when α equals 60° because then the pressure drop of classifier is small and the residence time of fine powder is the shortest.The experiment and application indicate that the design of diversion circle improves the efficiency and productivity of the vertical mill classifier.
出处 《浙江工业大学学报》 CAS 2012年第1期70-74,共5页 Journal of Zhejiang University of Technology
基金 国家火炬计划基金资助项目(09C2621502330) 西南科技大学研究生创新基金项目(11ycjj31)的资助
关键词 数值模拟 导流圈 立磨选粉机 两相流 numerical simulation; diversion circle; vertical mill classifier; two-phase flow
  • 相关文献

参考文献6

二级参考文献16

  • 1李洪,李双跃,刘继光.干式空气分级机分类与设计概论[J].建材发展导向,2006,4(2):63-66. 被引量:7
  • 2谭晓军,陈丽华.扩散式气固分离器内两相流动数值模拟[J].工程热物理学报,2007,28(1):74-76. 被引量:2
  • 3Hiroshi Morimoto, Toshihiko Shakouchi. Classification of ultra fine powder by a new pneumatic type classifier [J]. Powder Technology, 2003, 131: 71-79.
  • 4Guo Lijie, Liu Jiaxiang, Liu Shengzhao, Wang Jinggang. Velocity measurements and flow field characteristic analyses in a turbo air classifier [J]. Powder Technology, 2007, 178: 10-16.
  • 5Bhasker C. Numerical simulation of turbulent flow in complex geometries used in power plants [J]. Advances in Engineering Software, 2002, 33: 71-83.
  • 6Lee B E, Tu J Y, Fletcher C A J. On numerical modeling of particle-wall impaction in relation to erosion prediction: Eulerian versus Lagrangian method [J]. Wear, 2002, 252: 179-188.
  • 7Haiderand A, Levenspiel O. Drag coefficient and terminal velocity of spherical and non-spherical particles [J]. Powder Technology, 1989, 58: 63-70.
  • 8TSUJI Y.Discrete particle simulation of gas-solid flows[J].KONA,1993,11:57-68.
  • 9HAIDERAND A,LEVENSPIEL O.Drag coefficient and terminal velocity of spherical and nonspherical particles[J].Powder Technology,1989,58:63-70.
  • 10TABAKOFF W,WAKEMAN T.Measured particle rebound character istics useful for erosion prediction[J].ASME,1982,82:170.

共引文献267

同被引文献75

引证文献12

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部