期刊文献+

平面代数曲线的PH-C曲线逼近 被引量:6

PH-C curve approximation of planar algebraic curves
下载PDF
导出
摘要 代数曲线的近似参数化问题是计算机辅助几何设计与图形学领域的一个重要问题.由于PH-C曲线综合了Bézier曲线,PH曲线以及C曲线的许多优良性质,从而用PH-C曲线逼近代数曲线就显得十分必要.首先根据曲线的凹凸区间和单调区间对代数曲线进行合理分割,然后根据曲线段两端点的切线确定曲线段的三角形凸包,进一步根据此三角形凸包确定3次PH-C曲线的控制多边形,这样得到的PH-C逼近曲线保持了原代数曲线的一些重要几何性质,如单调性、凹凸性和G1连续性,并且通过算法的递归调用,可以将逼近误差控制在给定的范围之内.数值实验表明,该算法提供了平面代数曲线近似参数化的一条有效途径. Approximate parameterization of algebraic curve is an important topic in computer aided geometric design and graphics.PH-C curve inherits all the good quality from Bézier curve,PH curve and C curve,therefore PH-C curve approximation of algebraic curve is necessary.The algebraic curve is segmented according to convexity and monotonicity,the control polygon is constructed based on angles between two tangent lines and the line connecting two end points.A detailed algorithm is proposed to approximate algebraic curve with piecewise degree 3 PH-C curve.The approximate PH-C curve keeps some important geometric features of the original algebraic curve such as convexity、monotonicity and G1 continuity.The approximation error can be controlled by means of recursively use of the algorithm.Numerical experiments show that the algorithm provided an efficient approach to approximate parameterization of algebraic curve.
出处 《浙江工业大学学报》 CAS 2012年第1期111-114,118,共5页 Journal of Zhejiang University of Technology
基金 国家自然科学基金资助项目(61070126 61070135) 浙江省自然科学基金资助项目(Y1100837)
关键词 代数曲线 PH-C曲线 曲线逼近 algebraic curve; PH-C curve; curve approximation
  • 相关文献

参考文献6

二级参考文献15

  • 1张纪文,罗国明.三次样条曲线的拓广──C曲线[J].计算机辅助工程,1996,5(3):12-20. 被引量:236
  • 2[美]格列菲斯P.代数曲线[M].北京:北京大学出版社,1985..
  • 3[英]肯乌H M 蒲朗顿C.微积分及其应用[M].北京:高等教育出版社,1991..
  • 4方德植 陈奕培.射影几何[M].北京:高等教育出版社,1978..
  • 5Klass R. An offset spline approximation for plane cubic spline[J]. Computer-Aided Design, 1983, 15(4): 297-299.
  • 6Tiller W, Hanson E G. Offsets of two dimensional profiles [J].IEEE Computer Graphics & Applications, 1984, 4(9) : 36-46.
  • 7Coquillart S. Computinging offsets of B-spline curves [J].Computer-Aided Design, 1988, 19(6) : 305-309.
  • 8Hoschek J, Wissel N. Optimal approximation conversion of spline curve and spline approximation of offset curves [J].Computer Aided Design, 1988, 20(8) : 475-483.
  • 9Hoschek J. Spline approximation of offset [J]. Computer Aided Geometric Design, 1988, 5:33-40.
  • 10Li Y M. Curve offsetting base on Legendre series [J].Computer Aided Geometric Design, 1998, 15:711-720.

共引文献260

同被引文献54

  • 1郭蓓,彭学院,李连生,束鹏程.旋叶式压缩机的滑片顶部形状研究[J].西安交通大学学报,2004,38(7):717-721. 被引量:12
  • 2虞铭财,杨勋年,汪国昭.高阶连续的单位四元数插值曲线[J].计算机辅助设计与图形学学报,2005,17(3):437-441. 被引量:7
  • 3雍俊海,郑文.一类五次PH曲线Hermite插值的几何方法[J].计算机辅助设计与图形学学报,2005,17(5):990-995. 被引量:20
  • 4陆春晖,崇凯.双作用滑片式压缩机型线的分析与比较[J].压缩机技术,2005(5):13-16. 被引量:3
  • 5白鸿武,叶正麟,王树勋,石茂.近似弧长参数化Bézier曲线的最佳逼近[J].计算机工程与应用,2007,43(27):8-9. 被引量:1
  • 6COSTER C D, HABETS P. Two-point boundary value prob- lems: lower and upper solutions[M]. Amsterdam: Mathemat- ics in Science and Engineering, 2006 : 205.
  • 7CABADA A, HABETS P, POUSO R L. Optimal existence conditions for p-Laplacian equations with upper and lower solu- tions in the reverse order[J]. J Differential Equations, 2000, 166..385-401.
  • 8CABADA A, HABETS P, LOIS S. Monotone method for the Neumann problem with lower and upper solutions in the re- verse order [J]. Appl Math Compu, 2001,117 : 1-14.
  • 9TORRES P J, ZHANG Mei-rong. A monotone iterative scheme for a nonlinear second order equation based on a generalized anti-maxi- mum principle[J]. Math Nachr,2003,251 : 101-107.
  • 10JIANG Da-qing, YANG Ying, CHU Ji-feng, et al. The mon- otone method for Neumann functional differential equations with upper and lower solutions in the reverse order[J]. Non- linear Anal ,'2007,67 : 2815-2828.

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部