期刊文献+

基于平均影响值的反向传播神经网络方法用于提高密度泛函理论计算Y-NO键均裂能精度 被引量:5

Improving the Accuracy of DFT Calculation for Homolysis Bond Dissociation Energies of Y—NO Bond via Back Propagation Neural Network Based on Mean Impact Value
下载PDF
导出
摘要 将基于平均影响值(Mean impact value,MIV)的反向传播神经网络(Back propagation neural netowrk,BPNN)(MIV-BPNN)方法用于提高密度泛函理论(Density functional theory,DFT)计算Y—NO(Y=N,S,O及C)键均裂能的精度.利用量子化学计算和MIV-BPNN联合方法计算92个含Y—NO键的有机分子体系的均裂能.结果表明,相对于单一的密度泛函理论B3LYP/6-31G(d)方法,利用全参数下的BPNN方法计算92个有机分子均裂能的均方根误差从22.25 kJ/mol减少到1.84 kJ/mol,而MIV-BPNN方法使均方根误差减少到1.36 kJ/mol,可见B3LYP/6-31G(d)和MIV-BPNN联合方法可以提高均裂能的量子化学计算精度,并可预测实验上无法获取的均裂能值. The back propagation neural network(BPNN) approach based on mean impact value(MIV)(MIV-BPNN) was used to improve the accuracy of density functional theory(DFT) calculation for homolysis bond dissociation energies of Y—NO bond.Quantum chemistry calculations and MIV-BPNN were used jointly to calculate the homolysis bond dissociation energy(BDE) of 92 Y—NO organic molecular systems.The results show that compared to a single density functional theory B3LYP/6-31G(d) approach,full parameters BPNN approach reduces the root-mean-square(RMS) of the calculated homolysis BDE of 92 organic molecules from 22.25 kJ/mol to 1.84 kJ/mol and MIV-BPNN approach further reduces the RMS to 1.36 kJ/mol.It is clear that the combined B3LYP/6-31G(d) and MIV-BPNN approach can improve the accuracy of the homolysis BDE calculation in quantum chemistry and can predict homolysis BDE which can not be obtained experimentally.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2012年第2期346-352,共7页 Chemical Journal of Chinese Universities
基金 国家“九七三”计划项目(批准号:2009CB623605) 国家自然科学基金(批准号:20703008,20903020) 吉林省科技发展计划项目(批准号:20100114)资助
关键词 Y—NO键 均裂能 密度泛函理论 平均影响值 反向传播神经网络 Y—NO bond Homolysis bond dissociation energy Density functional theory Mean impact value Back propagation neural network
  • 相关文献

参考文献30

  • 1Butler A. R., Williams D. L. H.. Chem. Soc. Rev. [J], 1993, 22:233-241.
  • 2Avefill B. A.. Chem. Rev. [J], 1996, 96:2951-2964.
  • 3Palmer R. M. , Ferrige A. G. , Moncada S.. Nature[J], 1987, 327:524-530.
  • 4Ignarro L. J.. Ann. Rev. Pharmacol. Toxicol. [J], 1990, 30:535-560.
  • 5Feldman P. L., Griffith O. W., Stuehr D. J.. Chem. Eng. News[J], 1993, 20:26-38.
  • 6Fukuto J. M. , lgnarro L. J.. Acc. Chem. Res. [J], 1997, 30:149-152.
  • 7Moncada S. , Palmer R. M. J. , FIiggs E. A.. Pharmacol. Rev. [J], 1991,43:109-142.
  • 8Ignarro L. J.. Biochem. Pharmacol. [J], 1991,41:485-490.
  • 9Gnewuch C. T. , Sosnovsky G.. Chem. Rev. [J], 1997, 97:829-1014.
  • 10Chen~ J. P. , Wan~ K. , Yin Z.. Zhu X. O. , Lu Y.. Tetrahedron. Lett.[J] . 1998.39:7925-7928.

二级参考文献45

  • 1Wang P. G., Xian M., Tang X., et al.. Chem. Rev.[J], 2002, 102:1091 -1134
  • 2Zhang Y. Y., Xu A. M., Nomen M., et al.. J. Biol. Chem.[J], 1996, 271:14271-14279
  • 3Lucas L. T. , Gatehouse D. , Jones G. D. D. , et al.. Chem. Res. [J], 2001, 14:158-164
  • 4Kitsch M. , Fuchs A. , Groot H.. J. Bio. Chem. [J], 2003, 278:11931-11936
  • 5Sonnenschein K. , Groot H. , Kirsch M.. J. Biol. Chem. [ J], 2004, 279:45433-45440
  • 6Blanchard F. B. , Servy C. , Ducroeq C.. Free Radical Res. [J] , 2001,35(6) : 857-866
  • 7Cheng J. P., Xian M., Wang K., et al.. J. Am. Chem. Soc. [J], 1998, 120:10266-10267
  • 8Cheng J. P. , Wang K. , Yin Z. , et al.. Tetrahedron Lett. [J] , 1998, 39:7925-7928
  • 9Xian M. , Zhu X., Lu J., et al.. Org. Lett.[J], 2000, 2:265-268
  • 10Zhu X. Q. , He J. , Xian M. , et al.. J. Org. Chem. [J], 2000, 65:6729-6735

共引文献3

同被引文献51

  • 1田亮,常太华,曾德良,刘吉臻.基于典型样本数据融合方法的锅炉制粉系统故障诊断[J].热能动力工程,2005,20(2):163-166. 被引量:24
  • 2赵刚,于向军,吕震中,苏志刚,王茂贵.基于RBF神经网络的制粉系统故障诊断[J].江苏电机工程,2006,25(3):14-17. 被引量:5
  • 3曾德良,崔泽朋,田亮,赵征.基于灰色关联和D-S组合规则的磨煤机故障诊断[J].动力工程,2007,27(2):207-210. 被引量:14
  • 4Hutehison G. R., Rather M. A., Marks T. J.. J. Phys. Chem. A[J]. 2002, 106:10596-10605.
  • 5Li H. , Shi L. L. , Zhang M. , Su Z. M. , Wang X. J. , Hu L. H. ,Chen G. H.. J. Chem. Phys. [J]. 2007, 126:144101-144108.
  • 6Gao T. , Shi L. L. , Li H. B. , Zhao S. S. , Li H. , Sun S. L. , Su Z. M. , Lu Y. H.. Physical Chemistry Chemical Physics[J]. 2009, 11 : 5124-5129.
  • 7Gao T. , Sun S. L. , Shi L. L. , Li H. , Li H. Z. , Su Z. M. , Lu Y. H.. J. Chem. Phys. [J]. 2009, 130:184104-184107.
  • 8Liao Y. ,Chen Y. G. , Su Z. M. , Kan Y. H. , Duan H. X. , Zhu D. X.. Synth. Met. [J]. 2003, 137:1093-1094.
  • 9Shi L. L. , Liao Y. , Zhao L. , SuZ. M. , KanY. H. , Yang G. C. , Yang S. Y.. J. Organomet. Chem. [J]. 2007,692:5368-5374.
  • 10Yang G. , Su T. , Shi S. , Su Z. , Zhang H. , Wang Y.. J. Phys. Chem. A[J]. 2007, 111:2739-2744.

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部