期刊文献+

液体中空泡收缩过程的数值研究 被引量:6

Numerical Study on the Collapse of Cavitation Bubbles in Liquids
下载PDF
导出
摘要 材料在液体中的空蚀破坏程度会因为液体环境的改变而大相径庭,而液体中空泡的生长、溃灭是造成材料空蚀破坏最根本的原因。为了研究液体环境对空泡运动过程的影响,利用有限差分法计算空泡在不同液体环境中的收缩过程,对不同液体黏性、表面张力条件下不同尺寸空泡的收缩过程进行了分析。计算结果表明:液体黏性会减缓空泡收缩过程中的脉动现象,且黏性越大,空泡收缩过程中脉动现象所持续的时间越短,脉动幅度也越小;表面张力越大,空泡收缩稳定后的半径也越大,且表面张力在空泡收缩过程中表现出的对空泡泡壁的加速效应会增大空泡的脉动频率。与前人的研究相比,研究还发现:在同样的液体环境中,随着空泡初始半径的减小,空泡在收缩过程中呈现出的脉动现象所持续的时间会越来越短,而最终稳定后的量纲一半径则会越来越大,即空泡在收缩过程中被压缩的比例越来越小。计算结果为理解液体中空泡的溃灭行为和由此引起的空蚀破坏提供了理论依据。 Cavitation erosion of materials can be different when the liquid is changing. As the dynamics of cavitation bubbles directly lead to the cavitation erosion of materials, it is necessary to investigate the bubble dynamics in different liquids. The collapse process of bubbles filled with gases and vapors in liquid was numerically studied. The influence of viscosity and surface tension on the Collapse was investigated. It was found that the pulsing phenomenon during the collapse process is affected mostly by the viscosity ,while the final radius of the bubbles mostly by the surface tension. The time that the pulsing phenomenon lasts and the pulse amplitude appear to decrease with the increase of the viscosity, yet the frequen- cy of the pulsing phenomenon and the final radius Of the bubbles increase with the increase of the surface tension for the acceleration effect brought by the surface tension to the bubble wall. A smaller initial bubble radius would lead to a shorter pulsing phenomenon and a bigger final non-dimensional radius than a larger one, which was not found in former researches. This research can lead to a better understand of the collapse of cavitation bubbles, which can induce the cavitation erosion of materials.
出处 《润滑与密封》 CAS CSCD 北大核心 2012年第2期1-4,共4页 Lubrication Engineering
基金 国家自然科学基金项目(50805008 50975158)
关键词 空蚀 空化 空泡 液体黏性 表面张力 cavitation erosion cavitation cavitation bubble viscosity surface tension
  • 相关文献

参考文献12

  • 1Philipp A, Lauterbom W. Cavitation erosion by single laser-produced bubbles[ J ]. Journal of Fluid Mechanics, 1997,361 : 75 - 116.
  • 2Taleyarkhan R P,West C D,Cho J S,et al. Evidence for nuclear emissions during acoustic cavitation [ J ]. Science, 2002,295 (5561) : 1868 - 1873.
  • 3Flannigan D J, Suslick K S. Plasma formation and temperature measurement during single-bubble cavitation [ J ]. Nature, 2005, 434 (7029) :52 - 55.
  • 4Johnsen E, Colonius T. Numerical simulations of non-spherlcal bubble collapse [ J ]. Journal of Fluid Mechanics,2009,629:231 - 262.
  • 5Minsier V, De Wilde J, Proost J. Simulation of the effect of viscosity on jet penetration into a single cavitating bubble [ J ]. Journal of Applied Physics, 2009, 106 ( 8 ) : 084906 - 1 - 084906 - 10.
  • 6Gaitan D F, Tessien R A, Hiller R A, et al. Transient cavitation in high-quality-factor resonators at high static pressures [ J ]. Journal of The Acoustical Society of America, 2010,127 ( 6 ) : 3456 - 3465.
  • 7Ashworth V, Procter R P M. Cavitation damage in dilute polymer solutions [ J ]. Nature, 1975,258 ( 5530 ) :64 - 66.
  • 8Brujan E A, Al-Hussany A F H, Williams P R. Cavitation erosion in polymer aqueous solutions [ J ]. Wear, 2005,264 ( 11/ 12) :1035 - 1042.
  • 9Franc J P, Michel J M. Fundamentals of Cavitation [ M ]. Kluwer Academic Publishers,2005.
  • 10Rayleigh L. On the pressure developed in liquid during the collapse of a spherical cavity [ J ]. Philosophical Magazine, 1917,34(199 -04) :94-98.

二级参考文献14

  • 1赵瑞,徐荣青,沈中华,陆建,倪晓武.液体物质中的空化现象实验研究[J].光电子.激光,2006,17(5):629-633. 被引量:6
  • 2赵瑞,徐荣青,沈中华,陆建,倪晓武.激光空蚀机理的实验研究[J].光电子.激光,2007,18(9):1120-1123. 被引量:2
  • 3HUANG Ji-tang. The Principle and Application of Cavitation[M]. Beijing:Tsinghua University Press,1991.113-228.
  • 4Philipp A,Lauterborn W. Cavitation erosion by single-laser produced bubbles[J]. J Fluid Mech,1998,361 :75-114.
  • 5Tomita Y, Kodama T. Interaction of laser-induced cavitation bubbles with composite surfaces[J]. J Appl Phys,2003,94(5):2809-2816.
  • 6Shaw S J,Schiffers W P,Gentry T P,et al. The interaction of a single laser-generated cavity in water with a solid surface[J]. J Acoust Soc Am 1996,99(5) :2811-2824.
  • 7Vogel A,Busch S,Parlitz U. shock wave emission and cavitation bubble generation by picosencond and nanosecond optical breakdown in water[J]. J Acoust Soc Am 1996,100(1) :148-165.
  • 8Toegel R, Luther S, Lohse D.Viscosity destabilizes sonoluminescing bubbles[J]. Phys Rev Let 2006,96:114301.
  • 9Hua J S,Lou J. Numerical simulation of bubble rising in viscous liquid [J] .J Comput Phys,2007,222(2):769-795.
  • 10Maxwoethy T,Gnann O,Kurten M,et al. Experiments on the rise of air bubbles in clean viscous liquids[J]. J Fluid Mech,1996,321:421-441.

共引文献3

同被引文献57

引证文献6

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部