期刊文献+

均匀热流作用下含裂纹板I型温度应力强度因子的解析解 被引量:1

ANALYTICAL SOLUTION OF MODE I THERMAL STRESS INTENSITY FACTOR FOR CRACKED PLATE UNDER UNIFORM HEAT FLOW
原文传递
导出
摘要 研究一种新的温度边值问题。含中心裂纹无限大板受远场均匀热流作用,热流密度方向与裂纹有一夹角。当裂纹面上维持一恒定温差时,采用复变函数理论,得出了温度场、温度应力场与位移场的解析解。利用位移单值条件,确定出温度应力强度因子的解析表达式。针对铝合金LY12材料进行了相应数值计算,分析了热流密度大小与方向对温度分布与温度应力强度因子的影响。研究表明:该文给定的温度边界条件下,只产生I型温度应力强度因子,不产生II型温度应力强度因子。温度应力场取决于热流密度沿裂纹方向的分量,垂直于裂纹方向的分量对温度应力场没有影响。 A new thermal boundary value problem is investigated.An infinite plate with a central crack is subjected to remotely and uniformly applied heat flow,and there is an angle between the heat flow direction and the crack.When a constant temperature prevails on the crack surface,the analytical solutions of temperature,thermal stress and displacement fields are obtained by using the complex function approach in thermoelasticity.The thermal stress intensity factor is determined from the unique condition of the displacement field.Numerical computation was performed for the aluminum alloy LY12 material.The effects of magnitude and direction of heat flow on the temperature field and thermal stress intensity factor were discussed.The result shows that only mode I thermal stress intensity factor is induced while the mode II thermal intensity factor vanishes under the given thermal boundary condition.Thermal stress field only depends on the component of remote heat flow along the crack direction,while the component of heat flow normal to the crack surface has no influence on the thermal stress field.
出处 《工程力学》 EI CSCD 北大核心 2012年第2期39-44,共6页 Engineering Mechanics
基金 教育部博士点基金项目(200805360002) 湖南省科技计划项目(2011FJ3235)
关键词 热弹性力学 复变函数解法 I型裂纹 温度应力强度因子 解析解 thermoelasticity complex function approach mode I crack thermal stress intensity factor analytical solution
  • 相关文献

参考文献18

  • 1Waiters Matthew C, Paulino Glaucio H, Dodds Robert H, Jr. Stress-intensity factors for surface cracks in functionally graded materials under mode-I thermomechanical loading [J]. International Journal of Solids and Structures, 2004, 41(3/4): 1081-1118.
  • 2Fillery B P, Hu X Z. User friendly assessment of stress intensity factor in thermal shocked cracked structures with finite boundary restraint [J]. Procedia Engineering, 2010, 2(1): 499-509.
  • 3Mukhopadhyay N K, Maiti S K, Kakodkar A. Modified crack closure integral based computation of stress intensity factors for 2-D thermoelastic problems throughboundary element method [J]. Nuclear Engineering and Design, 1999, 187(3): 277- 190.
  • 4Serkan Dag, Bora Yildirim, Duygu Sarikaya. Mixed-mode fracture analysis of orthotropic functionally graded materials under mechanical and thermal loads [J]. International Journal of Solids and Structures, 2007, 44(24): 7816-7840.
  • 5Yoshiaki Nomura, Tom Ikeda, Noriyuki Miyazaki. Stress intensity factor analysis at an interracial comer between anisotropic bimaterials under thermal stress [J]. Engineering Fracture Mechanics, 2009, 76(2): 221-235.
  • 6Kang Yong Lee, Chang Won Shul. Determination of thermal stress intensity factors for an interface crack under vertical uniform heat flow [J]. Engineering Fracture Mechanics, 1991, 40(6): 1067- 1074.
  • 7Lam K Y, Tay T E, Yuan W G. Stress intensity factors of cracks in finite plates subjected to thermal loads [J]. Engineering Fracture Mechanics, 1992, 43(4): 641 -650.
  • 8Kang Yong Lee, Sang-Joon Park. Thermal stress intensity factors for partially insulated interface crack under uniform heat flow [J]. Engineering Fracture Mechanics, 1995, 50(4): 475-482.
  • 9Liu L, Kardomateas G A. Thermal stress intensity factors for a crack in an anisotropic half plane [J]. International Journal of Solids and Structures, 2005, 42(18/19): 5208- 5223.
  • 10Lu Yanlin, Zhang Shujia, Huang Xianping, Huang Jun. Determination of histories of SIF distributions for axial semi-elliptical surface cracks in hollow cylinders subjected to thermal shock [J]. International Journal of Pressure Vessels and Piping, 2003, 80(3): 167- 178.

二级参考文献32

  • 1李绍武,尹振军.无网格数值方法在结构物水动力研究中的应用[J].水科学进展,2004,15(6):739-744. 被引量:9
  • 2周维垣,黄岩松,林鹏.三维无单元伽辽金法及其在拱坝分析中的应用[J].水利学报,2005,36(6):644-649. 被引量:14
  • 3杨晓翔,范家齐,匡震邦.求解混合型裂纹应力强度因子的围线积分法[J].计算结构力学及其应用,1996,13(1):84-89. 被引量:23
  • 4Willam K J, Warnke E E Constitutive models for the triaxial behavior of concrete[J]. Int. Assoc. Bridge Struct. Eog., 1975, 19:174 - 204.
  • 5Elwi A A, Murray D W. A 3D hypoelastic concrete constitutive relationship[J]. J. Eng. Mech. Div., ASCE, 1979, 105(EM4):623 - 641.
  • 6Bathe K J, Ramaswamy S. On three-dimensional nonlinear analysis of concrete structures[J]. Nul. Eng. and Design, 1972, 52:385 - 409.
  • 7Bazant Z P, Cedolin L. Blunt crack band propagation in finite element analysis[J]. J. Eng. Mech. Div., ASCE, 1979, 105(EM2):297 - 315.
  • 8Simo J C, Laursen T A. An augmented Lagranian treatment of contact problems involving friction[J]. Computers and Structures, 1992,42(1): 97 - 116.
  • 9Laursen T A, Simo J C. Algorithmic symmetrization of Coulomb frictional problems using augmented Lagrangians[J]. Computers Methods in Applied Mechanics and Engineering, 1993, 108(1/2):133 - 146.
  • 10Boley B A,Weiner J H.Theory of thermal stresses[M].Wiley,New York,1960.

共引文献30

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部