期刊文献+

基于改进的MDF特征的手写体数字识别 被引量:2

Handwritten Numeral Recognition Based on Modified MDF
下载PDF
导出
摘要 方向特征是目前手写体识别中最常用和有效的特征之一.为了减少方向值提取过程中带来的误差,对改进的方向特征(MDF)提出了进一步的改进(MMDF),在方向值提取过程中对方向突变条件进行调整,同时引入半方向归一化线段方向并用二维数组来表示方向值.实验证明采用BP神经网络分类器对手写数字进行识别,与MDF相比,MMDF能同时降低拒识率和提高识别精度. Direction feature is the most commen and effective feature extraction technology in handwritten character recogniton. In or- der to reduce errors during direction value extracting, a number of modifications are proposed to the modifed direction feature ( MDF ) ~ In direction feature value extraction process, some adjustment is performed to the conditon of dirction mutation and half dirction is ~troduction to normalized segment. A two-dimensional array is used to represent the direction value instead of the original one-dimen- sional. The modified MDF{ MMDF) is tested in handwritten numeral database using BP neural network-based classifier and compare to the MDF. MMDF outperformed MDF both in rejection rate and recognition accuray.
出处 《小型微型计算机系统》 CSCD 北大核心 2012年第2期303-306,共4页 Journal of Chinese Computer Systems
基金 2009年江苏省自然科学基金项目(BK2009116)资助 2009年江苏省科技支撑计划(工业)(BK2009604)资助
关键词 手写体识别 方向特征 方向值提取 BP神经网络 handwritten character recogniton direction feature direction value extraction BP neural network
  • 相关文献

参考文献9

  • 1Fujisawa H, Liu C L. Directional pattern matching for character recognition revisited [C]. International Confcrence on Document Analysis and Recognition, 2003-. 194-798.
  • 2Kato N, Suzuki M, Omachi S, et al. A handwritten character rec- ognition system using directional element feature and asymmetric mahalanobis distance [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21 (3) :258-262.
  • 3林颖,吕岳.基于方向线素特征的孟加拉手写数字识别[J].计算机工程,2009,35(15):185-186. 被引量:2
  • 4Blumenstein M,Vcrma B, Basil H. A novel feature extraction tech- nique for the recognition of segmented handwritten characters [ C]. Proceedings of the Seventh International Conference on Document Analysis and Recognition, 2003,1:13%141.
  • 5Blumenstein M, Liu X Y, Verma B. A modified direction feature for cursive character recognition [ C ]. International Joint Confer- ence on Neural Networks, 2004,4:2983-2987.
  • 6Blumensteina M, Liu X Y, Brijesh Vermab. An investigation of the modified direction feature for cursive character recognition [ J]. Pattern Recognition ,2007,40(2) :376-388.
  • 7Arrnand S, Blurnenstein M, Muthukkumarasamy V. Off-line sig- nature verification using an cnhanced modified direction feature with single and multi-classifier approaches [J]. 1EEE Computa- tional Intelligence,2007,2 ( 2 ) : 18-25.
  • 8Nguycn V, Blumonstcin M, Lce.dham G. Global features for the off-line signature verification problem [C]. International Confer- ence on Document Analysis and Recognition, 2009:1300-1304.
  • 9Paul D Gader, Magdi Mohamed. Jung-Hsien Chiang. Handwritten word recogniton with character and inter-character neural netwroks [J]. IEEE Transactions on Systvms, Man, and Cybernetics, Part B: Cybernetics, 1997,27(1) :158-164.

二级参考文献6

  • 1Dutta A K,Chaudhuri S.Bengalil Alpha-numeric Numeral Recognition Using Curvature Features[J].Pattern Recognition,1993,(26):1757-1770.
  • 2Pal U,Chaudhuri B B.Automatic Recognition of Unconstrained Off-line Bangla Hand-written Numerals[J].lecture Notes on Computer Science,2000,1948:371-378.
  • 3Pal U,Belald A,Chaudhuri B B.A System for Bangla Handwritten Numeral Recognition[J].IETE Journal of Research,2006,52(1):27-34.
  • 4Roy K,Pal T,Pal U,et al.A System for Bimgla Handwritten Numeral Recognition Based of Directional Feature[C]//Proc.of the 4th International Conference on Cognition and Recognition.Gold Coast,Australia:[s.n.],2005.
  • 5Xiang Jianying,Sun Shiliang,Lu Yue.A High Reliability Classifier Using Decision Trees and AdaBoost for Recognizing Handwritten Bangla Numerals[C]//Proc.of ICWAPR'07.Beijing,China,[s.n.],2007.
  • 6Kato N,Suzuki M,Omachi S,et al.A Handwritten Character Recognition System Using Directional Element Feature andAsymmetric Mahalanobis Distance[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1999,21(3):258-262.

共引文献1

同被引文献17

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部