期刊文献+

基于神经元PID的风力发电机组独立变桨控制 被引量:7

Individual Variable Propeller Control of Wind Turbine Based on Neural Network PID
下载PDF
导出
摘要 针对传统统一变桨距控制策略存在的不足,基于风力机空气动力学原理,提出了基于神经元PID的独立变桨距控制策略,将测量的桨叶根部My方向载荷通过神经元PID控制算出d、q轴的桨距角,经反Park变换得到3个桨叶的附加桨距角,将其与统一变桨距角相加作为独立桨距角的设定值。并借助Fast软件平台以2MW变速变桨风力发电机组为例,仿真比较了独立变桨距控制策略与统一变桨距控制策略。结果表明,独立变桨距控制策略能有效保证在额定转速下机组输出功率稳定,且能有效降低风力发电机组各零部件的疲劳载荷。 In view of shortcomings of traditional unified variable propeller control strategy,based on the aerodynamics principle of wind turbine,this paper proposes neural network PID control strategy to accomplish the individual variable propeller control of wind turbine.According to measure load of propeller shank in direction My,the propeller angle between d and q axis is calculated by using neural network PID control.And additional propeller pitch angles of three propellers are obtained with inverse park transformation.Then the setting value of individual propeller pitch angle is got by adding the unified variable propeller pitch angle.Taking 2 MW variable speed variable propeller wind turbine for an example,this control strategy is simulated on the Fast software platform.Compared with the traditional method of propeller control strategy,the results show that the proposed control strategy can maintain a better power regulation at the rated speed and reduce fatigue load of components for wind turbine effectively.
作者 郑宇
出处 《水电能源科学》 北大核心 2012年第2期151-154,163,共5页 Water Resources and Power
关键词 神经网络 风力发电机组 独立变桨控制 桨叶根部载荷 Fast软件 neural network wind turbine individual variable propeller control load of propeller shank Fast software
  • 相关文献

参考文献9

  • 1宋小亮,蔚兰,朱益波,郭国富,徐坤.风力发电模拟电压跌落的实现方法[J].水电能源科学,2009,27(5):221-223. 被引量:7
  • 2李德源,叶枝全,陈严,包能胜.风力机叶片载荷谱及疲劳寿命分析[J].工程力学,2004,21(6):118-123. 被引量:74
  • 3吴建东,何永谦,陆继明,毛承雄.交流励磁风力发电机实用并网控制研究[J].水电能源科学,2011,29(1):138-141. 被引量:4
  • 4Liu Hong wei, Lin Yonggang, Li Wei. Study on Con- trol Strategy of Individual Blade Pitch-controlled Wind Turbine [A]. Proceeding of the 6th World Congress on Intelligent Control and Automation [C]. Dalian, China, 2006 : 6 489-6 492.
  • 5Tony Burton, David Sharpe, Nick Jenkins, et al. Wind Energy Handbook[M]. New York: John Wiley & Sons,2001.
  • 6Jason M Jonkman, Marshall L Buhl Jr. Fast User's Guide[R]. USA: National Renewable Energy Labo- ratory, 2005.
  • 7Bossanyi E A, Garrad Hassan, Partners Ltd Bristol UK. Further Load Reductions with Individual Pitch Control[J]. Wind Energy,2005,8 :481-485.
  • 8Van Der Hooft E L,Schaak P,Van Engelen T G.Wind Turbine Control Algorithms [M]. Holland: Dutch Ministry of Economic Affairs, 2003.
  • 9Bossanyi E A. Wind Turbine Control for Load Re duction[J]. Wind Energy, 2003,6(3) : 229-244.

二级参考文献27

  • 1陈学顺,许洪华.双馈电机变速恒频风力发电运行方式研究[J].太阳能学报,2004,25(5):582-586. 被引量:38
  • 2赵栋利,许洪华,赵斌,郭金东.变速恒频风力双馈发电机并网电压控制研究[J].太阳能学报,2004,25(5):587-591. 被引量:55
  • 3刘其辉,贺益康,张建华.交流励磁变速恒频风力发电机并网控制策略[J].电力系统自动化,2006,30(3):51-55. 被引量:67
  • 4李东东.风力发电机组并网控制与仿真分析[J].水电能源科学,2006,24(1):9-11. 被引量:9
  • 5Mullane A, Lightbody G, Yacamini R. Wind-Turbine Fault Ride-Though Enhancement [J]. IEEE Transactions on Power Systems,2005,20(4):1 929-1 937.
  • 6Yongfeng Ren, Hongyan Xu, Jianlin Li, et al. Research on Low Voltage Ride through of Doubly-fed Induction Generator Wind Power System[A]. International Symposiumon Intelligent Information Technology Application Workshops[C]. Shanghai: IITAW,2008:1117-1 120.
  • 7Joos G. Wind Turbine Generator Low Voltage Ride through Requirements and Solutions[A]. IEEE Power and Energy Society General Meeting Conversion and Delivery of Electrical Energy in the 21st Centry[C]. Pittsburgh: IEEE. 2008:1-7.
  • 8Tang Y,Xu L. A Flexible Active and Reactive Power Control Strategy for a Variable Speed Constant Frequency Generating System [J ]. IEEE Transactions on Power Electronics, 1995,10(4) :472-478.
  • 9国家电网公司.国家电网公司风电场接人电网技术规定(修订版)[EB/OL].http://www.cnwpem.com/webdata/down-list/2009-08/20090807085724969.pdf,2009-08-07.
  • 10Jackson K L. A method of fatigue life assessment of wind turbine structures [J]. Wind Energy ASME, 1993, 14(2): 179.

共引文献82

同被引文献32

  • 1吴志敏,李书臣.基于动态递归神经网络的自适应PID控制[J].控制工程,2004,11(3):216-219. 被引量:4
  • 2赵文珍,秦立学,姚兴佳,单光坤.MW级风力发电机组变桨距系统建模研究[J].机床与液压,2006,34(6):157-158. 被引量:9
  • 3Fernando D.Bianchi,HernanDeBattista.Wind -Turbine Control systems [M].Germany:Springer Science+Business Media,2007: 29-47.
  • 4Erich Hau.Wind Turbines [M],Germany:Springer-Verlag Berlin Heidelberg,2006:357-387.
  • 5Shen X,Zhu X C,Du Z H.Wind turbine aerodynamics and loads control in wind shear flow[J].Energy,2011,36(3):1424-1434.
  • 6Khezami N,Guillaud X,Braiek N B.Muitimodel LQ controller design for variable-speed and variable pitch wind turbines at high wind speeds [J].lnternational Journal of Modelling,Identification and Control,2012,15(2):117-124.
  • 7Lopez J Sanchis P,Roboam X,et aI.Dynamic behavior of the doubly fed induction generator during three-phase voltage dips [J].IEEE Transactions on Energy Conversion,2007,22(3): 09-662.
  • 8窦真兰大型风机异步变桨技术的研究[D]上海:上海交通大学,2013:22-42.
  • 9刘烨.风电机组系统动力学模型及关键零部件优化研究[D]重庆:重庆大学,2009:31-46.
  • 10孔屹刚,王志新.大型风电机组模糊滑模鲁棒控制器设计与仿真[J].中国电机工程学报,2008,28(14):136-141. 被引量:43

引证文献7

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部