摘要
研究了一类分数阶微分方程反周期边值问题,在连续函数f:[0,T]×R→R满足一定条件下,利用不动点定理得到了分数阶微分方程反周期边值问题解的存在性与唯一性,并举例说明了结论的适用性.
This paper discusses a class of anti-periodic fractional boundary value problems.As the continuous function f:×R→R can meet certain conditions,the existence and uniqueness of solutions for anti-periodic fractional boundary value problems are obtained by applying the fixed point theorem.In the end,several examples are given to illustrate the results.
出处
《贵州师范大学学报(自然科学版)》
CAS
2012年第1期42-45,共4页
Journal of Guizhou Normal University:Natural Sciences
基金
国家自然科学基金项目(NO.10771212)
关键词
分数阶微分方程
反周期边值问题
不动点定理
Fractional differential equations
Anti-periodic boundary value problems
Fixed point theorem