期刊文献+

纳米SiO_2对静电纺LA-PA/PET复合相变纤维形态和热学性能的影响 被引量:7

Effects of nano-SiO_2 on morphology and thermal energy storage of electrospun LA-PA/PET composite phase change fibers
下载PDF
导出
摘要 以月桂酸和棕榈酸二元低共熔混合物(LA-PA)、聚对苯二甲酸乙二酯(PET)和纳米二氧化硅(SiO2)为原料,通过静电纺丝的方法成功制备了新型的LA-PA/PET/SiO2定形相变复合纤维。分别采用扫描电子显微镜(SEM)和差示扫描量热仪(DSC)研究了纳米SiO2对静电纺LA-PA/PET/SiO2复合相变纤维的形貌结构和热学性能的影响。SEM观察结果显示,随着纳米SiO2的加入,复合相变纤维表面呈现出光滑的形态特点,纤维直径有所降低;且随着纳米SiO2含量的增加而逐渐减小。DSC分析结果表明纳米SiO2的含量对复合相变纤维的熔化焓值和结晶焓值有一定的影响,对相变温度没有显著性的影响。 The form-stable phase change composite fibers consisting of binary LA-PA eutectic,polyethylene terephthalate(PET) and silica nanoparticles(nano-SiO2) were successfully fabricated by the technique of electrospunning.The effects of nano-SiO2 on morphology and thermal energy storage properties of electrospun LA-PA/PET/SiO2 phase change composite fibers were investigated by SEM and DSC.The SEM images showed that the electrospun LA-PA/PET/SiO2 ultrafine composite fibers possessed the smooth surfaces morphologies with fiber diameters slightly smaller than those of the LA-PA/PET fibers with wrinkled surfaces;the average diameters of the ultrafine composite fibers gradual decreased with increasing content of the nano-SiO2 in the composite fibers.The DSC results indicated that the content of nano-SiO2 in the fibers plays an important role on the enthalpies values of melting and crystallization of the composite phase change fibers,while it had no significant effect on the temperatures of phase transitions.
出处 《功能材料》 EI CAS CSCD 北大核心 2012年第3期309-312,共4页 Journal of Functional Materials
基金 国家自然科学基金资助项目(51006046) 江苏省自然科学基金资助项目(BK2010140) 高等学校博士学科点专项科研基金资助项目(200802951011) 江苏省研究生培养创新工程资助项目(CXLX11-0498)
关键词 静电纺丝 复合相变纤维 LA-PA二元低共熔物 纳米SIO2 形貌 热学性能 electrospinning phase change composite fibers binary LA-PA eutectic nano-SiO2 morphology thermal energy storage
  • 相关文献

参考文献11

  • 1Farid M M,Khudhair A M,Zaek S A K,et al. [J]. Energy Conversion and Management, 2004,45 : 1597-1615.
  • 2Sharma A, Tyagi V V, Chen C R, et al. [J]. Renewable and Sustainable Energy Reviews,2009,13 :318-345.
  • 3Mondal S. [J]. Applied Thermal Engineering, 2008, 28: 1536-1550.
  • 4Sari, A. [J]. Energy Conversion and Management, 2003, 44 : 2277-2287.
  • 5Dimaano M N R, Watanabe T. [J]. Solar Energy, 2002, 72 : 205-215.
  • 6Sari A, Sari H, Onal A. [J]. Energy Conversion and Management,2004,45 : 365-376.
  • 7Wang L J ,Meng D. [J]. Applied Energy, 2010,7:2660-2665.
  • 8Ramakrishna S,Fujihara K,Teo W E,et al. [J]. Materials Today, 2006,9 : 40-50.
  • 9McCann J T,Marquez M,Xia Y. [J]. Nano Lett,2006,6: 2868-2872.
  • 10陈长中,王林格,黄勇.纤维素基储能调温超细纤维的制备[J].高分子通报,2010(7):62-72. 被引量:13

二级参考文献29

  • 1HAMMOND M J. Reversible liquid/solid phase change compositions[ P]. United States Patent: USA 5785884, 1998 - 07 - 28.
  • 2FELDMAN D,SHAPIRO M M,BANU D. Organic phase change materials for thermal energy storage [ J ]. Solar Energy Materials, 1986,13 : 1 - 10.
  • 3SYED M T,KUMAR S, MOALLEMI M K, et al. Thermal storage using form-stable phase-change materials [ J ]. Journal of Heating Refrigerating and Air - Conditioning Engineers, 1997,39 (5) :45 - 50.
  • 4AKIYAMA T, YAGI J. Encapsulation of phase change materials for storage of high temperature waste heat[ J ]. High Temperature Materials and Processes, 2000, 19 (4) : 219 -222.
  • 5VIGO T L, FROST C M. Temperature-adaptable riders [J]. Textile Research Journal, 1986,56 (12) : 737 - 740.
  • 6AHMET Sar. Form-stable paraffin/high density polyethylene composites as solid-liquid phase change material for thermal energy storage:preparation and thermal properties [J]. Energy Conversion and Management, 2004, 45:2033 - 2042.
  • 7吉冈甲子狼,获野一善.物理化学计算[M].河南:河南科学技术出版社,1981.
  • 8Vigo T L, Frost C M. Textile Research J, 198Z, 55 (10) : 633 - 637.
  • 9VigoT I.,Frost C M. J Coated Fabrics,1983,12(40):243-254.
  • 10Pause B. J Coated Fabrics,1995,25(7):59-68.

共引文献28

同被引文献74

引证文献7

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部