期刊文献+

锂离子电池正极材料Na_3V_2(PO_4)_2F_3的原位XRD及固体核磁共振研究 被引量:6

In situ XRD and solid state NMR characterization of Na_3V_2(PO_4)_2F_3 as cathode material for lithium-ion batteries
原文传递
导出
摘要 采用溶胶凝胶法制备Na3V2(PO4)2F3/C复合材料,该材料具有优异的电化学循环性能和倍率性能.利用电化学原位同步辐射X射线衍射(XRD)及魔角旋转固体核磁共振(MASSS-NMR)技术研究了Na3V2(PO4)2F3材料充放电过程中结构变化过程及Li/Na嵌入-脱出反应.研究结果表明,Na3V2(PO4)2F3的电极反应按嵌入-脱出反应机理进行,充放电过程中材料具有优异的结构稳定性.我们还发现Na3V2(PO4)2F3与电解液接触后与电解液中的Li+发生部分交换反应形成LixNa3-xV2(PO4)2F3.在首次充电时,Li+和结构中Na1位置的Na+共同从晶格中脱出;而首次放电过程中,Na+和Li+共同嵌入到晶格中;充放电过程中发生的是Li+和Na+的共嵌入-脱出反应. In this work,Na3V2(PO4)2F3/C composite fluorophosphate cathode material is synthesized by a sol-gel process.The as prepared material shows excellent electrochemical performance.A capacity of 125 mAh/g of the material is obtained at the current density of 150 mA/g.When cycling at the current density of 3000 mA/g,it still delivers a capacity of 110 mAh/g(88% of the initial capacity at 150 mA/g).The charging and discharging mechanism of this material is investigated by synchrotron-based in situ XRD and ex situ MAS SS-NMR.In situ XRD results indicate a single phase electrochemical delithiation/lithiation process and the material shows excellent structure stability during charge/discharge process.The ex situ MAS SS-NMR results show that Li-Na exchange happens when Na3V2(PO4)2F3 contacts with electrolyte,and the charge/discharge mechanism is:Li+ and Na+ in the Na1 site are deintercalated from the structure in the first charge process;Li+ and Na+ are co-intercalated in the structure in the following discharge process.
出处 《中国科学:化学》 CAS CSCD 北大核心 2012年第1期38-46,共9页 SCIENTIA SINICA Chimica
基金 国家重点基础研究发展规划(973计划)(2007CB209702&2011CB935903) 国家自然科学基金(20873115)的资助
关键词 MAS SS-NMR 同步辐射原位XRD Na3V2(PO4)2F3 离子交换 锂离子电池 MAS SS-NMR synchrotron in situ XRD Na3V2(PO4)2F3 ion-exchange lithim-ion batteries
  • 相关文献

参考文献18

  • 1Padhi AK, Nanjundaswamy KS, Goodenough JB. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc, 1997, 144: 1188-1194.
  • 2Armand M, Tarascon JM. Building better batteries. Nature, 2008, 451: 652-657.
  • 3Nyten A, Abouimrane A, Armand M, Gustafsson T, Thomas JO. Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material. Electrochem Commun, 2005, 7: 156-160.
  • 4Gaberscek M, Dominko R, Bele M, Meden A, Remskar M, Jamnik J. Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials. Electrochem Commun, 2006, 8: 217-222.
  • 5Gong ZL, Li YX, Yang Y. Synthesis and characterization of Li2MnxFe1-xSiO4 as a cathode material for lithium-ion batteries. Electrochem Solid-State Lett, 2006, 9: A542-A544.
  • 6Li YX, Gong ZL, Yang Y. Synthesis and characterization of Li2MnSiO4/C nanocomposite cathode material for lithium ion batteries. J Power Sources, 2007, 174: 528-532.
  • 7Barker J, Saidi MY, Swoyer JL. Electrochemical insertion properties of the novel lithium vanadium fluorophosphate, LiVPO4F. J Electrochem Soc, 2003, 150: A1394-A1398.
  • 8Gover RKB, Bryan A, Burns P, Barker J. The electrochemical insertion properties of sodium vanadium fluorophosphate, Na3V2(PO4)2F3. Solid State Ionics, 2006, 177: 1495-1500.
  • 9Jiang T, Chen G, Li A, Wang CZ, Wei YJ. Sol-gel preparation and electrochemical properties of Na3V2(PO4)2F3/C composite cathode material for lithium ion batteries. J Alloy Compd, 2009. 604-607.
  • 10Ellis BL, Makahnouk WRM, Makimura Y, Toghill K, Nazar LF. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Nat Mater, 2007, 6: 749-753.

二级参考文献9

  • 1Padhi A K, Nanjundas wamy K S, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [ J ]. J Electrochem Soc, 1997,144:1188-1194.
  • 2Nyten A, Abouimrane A, Armand M. Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material[ J]. Electrochem Commun,2005,7 : 156-160.
  • 3Arroyo-de Dompablo M E, Armand M, Tarascon J M. On-demand design of polyoxianionic cathode materials based on electronegativity correlations:An exploration of the Li2 MSiO4 system ( M = Fe, Mn, Co, Ni ) [ J ]. Electrochem Commun, 2006,8 : 1292-1298.
  • 4Dominko R, Bele M, Gaberseek M. Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials [ J ]. Electrochem Commun,2006,8 : 217 -222.
  • 5Li Y X, Gong Z L, Yang Y. Synthesis and characterization of Li2MnSiO4/C nanocomposite cathode material for lithium ion batteries [ J ]. Journal of Power Sources, 2007,174 (2) : 528 -532.
  • 6Gong Z L, Li Y X, Yang Y. Synthesis and characterization of Li2MnxFe1-xSiO4 as a cathode material for lithium-ion batteries [ J ]. Electrochem Solid State Lett, 2006,9 : A542-A544.
  • 7Politaev V V, Petrenko A A, Nalbandyan V B, et al. Crystal structure, phase relations and electrochemical properties of monoclinic Li2 MnSiO4 [ J ]. J Solid State Chemistry,2007,180 : 1045-1050.
  • 8Mali G,Meden A,Dominko R. ^6Li MAS NMR spectroscopy and first-principles calculations as a combined tool for the investigation of Li2MnSiO4 pelymorphs [ J ]. Chem Commun,2010,46:3306-3308.
  • 9Arroyo-de Dompablo M E, Dominko R, Gallardo-Amores J M, et al. On the energetic stability and electrochemistry of Li2 MnSiO4 polymorphs [ J ]. Chem Mater, 2008, 20:5574-5584.

共引文献3

同被引文献229

  • 1Tarascon J M. Key challenges in future Li-hattery research. Philos Trans R Soc A-Math Phys Eng Sci, 2010, 368:3227-3241.
  • 2Thackeray M M, Johnson C S, Vaughey J T, et al. Advances in manganese-oxide composite electrodes for lithium-ion batteries. J Mater Chem, 2005, 15:2257-2267.
  • 3Johnson C S, Kim J S, Lefief C, et al. The significance of the Li2MnO3 component in 'composite' xLizMnO3 (1-x)LiMn05Ni0.502 electrodes. Electrochem Commun, 2004, 6:1085-1091.
  • 4Thackeray M M, Kang S H, Johnson C S, et al. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem, 2007, 17:3112-3125.
  • 5Johnson C S, Li N, Lefief C, et al. Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3(l-x) LiMno 333Ni0.333Co0.333O2 (O≤x≤0.7). Chem Mater, 2008, 20:6095-6106.
  • 6Guo X J, Li Y X, Zheng M, et al. Structural and electrochemical characterization of xLi[Li1/3Mnz2/3]O2 (1-x)Li[Nil/3Mn1/3CO1/3]02 (0≤x≤0.9) as cathode materials for lithium ion batteries. J Power Sources, 2008, 184:414-419.
  • 7Strobel P, Lambert-Andron B. Crystallographic and magnetic structure of Li2MnO3. J Solid State Chem, 1988, 75:90-98.
  • 8Yoon W S, lannopollo S, Grey C P, et al. Local structure and cation ordering in O3 lithium nickel manganese oxides with stoichiometry Li[NixMn(2-x)/3Li(1-2x)/3]O2. Electrochem Solid-State Lett, 2004, 7: A 167-A 171.
  • 9Kang S H, Kempgens P, Greenbaum S, et al. Interpreting the structural and electrochemical complexity of 0.5Li2MnO3.0.5LiMO2 electrodes for lithium batteries (M=Mn0.5-xNi0.5-xCo2x, 0<x<0.5). J Mater Chem, 2007, 17:2069-2077.
  • 10Lu Z, Chen Z, Dahn J R. Lack of cation clustering in Li[NixLi1/3-2x/3Mn2/3-x/3]O2 (0<x≤1/2) and Li[CrxLi(1-x)/3Mn(2-2x/3]O2 (0<x<l). Chem Mater, 2003, 15:3214-3220.

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部