期刊文献+

Frequency stabilization of pulsed CO_2 laser using setup-time method

Frequency stabilization of pulsed CO_2 laser using setup-time method
原文传递
导出
摘要 A new method for laser-frequency stabilization by controlling the pulse setup time is presented. The frequency-stabilization system monitors the pulse setup time continuously, and controls it by adjusting the cavity length. Laser frequency is stabilized to the center of the gain curve when the setup time is the shortest. The system is used to stabilize a radio-frequency-excited waveguide CO2 laser tuned by grating, and the shift of laser frequency is estimated to be less than ±25 MHz for an extended period. The system has the advantages of compact structure, small volume, and low cost. It can be applied for frequency stabilization of other kinds of pulsed lasers with adjustable cavity. A new method for laser-frequency stabilization by controlling the pulse setup time is presented. The frequency-stabilization system monitors the pulse setup time continuously, and controls it by adjusting the cavity length. Laser frequency is stabilized to the center of the gain curve when the setup time is the shortest. The system is used to stabilize a radio-frequency-excited waveguide CO2 laser tuned by grating, and the shift of laser frequency is estimated to be less than ±25 MHz for an extended period. The system has the advantages of compact structure, small volume, and low cost. It can be applied for frequency stabilization of other kinds of pulsed lasers with adjustable cavity.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2012年第1期44-46,共3页 中国光学快报(英文版)
基金 supported by the National Natural Science Foundation of China (No.60668016) the New Century Foundation for Talents of the Ministry of Education of China (No.NCET-07-0240) the Fundamental Research Funds for the Central Universities (No.HIT.BRET.2010014) the Science and Technology Planning of Shandong Province,China (No.2009GG10005006) the Funds for National Key Laboratory of Tunable Laser Technology of China
关键词 Frequency stability Frequency stability
  • 相关文献

参考文献22

  • 1R. C. Viscovini, F. C. Cruz, E. M. Telles, A. Scalabrin, and D. Pereira, Int. J. Infraned Millimeter waves 22, 757 (2001).
  • 2T. George, H. W. Nicolaisen, V. Bernard, P. E. Durand, A. Amy-Klein, C. Chardonnet, and C. Breant, Proc. SPIE 2378, 156 (1995).
  • 3N. A. Gryaznov, V. M. Kiselev, and E. N. Sosnov, Proc. SPIE 2095, 161 (1994).
  • 4W. Lu, M. Gao, Q. Wang, and T. Shang, Opt. Laser Technol. 34, 661 (2002).
  • 5C.-C. Tsai, T. Lin, C.-Y. Shieh, T.-C. Yen, and J.-T. Shy, Appl. Opt. 30, 3842 (1991).
  • 6A. C. Kuhnet and S. Dubovitsky, Proc. SPIE 4852, 531 (2003).
  • 7A. A. Danylov, T. M. Goyette, J. Waldman, M. J. Coulombe, A. J. Gatesmn, R. H. Giles, W. D. Goodhue, X. Qian, and W. E. Nixon, Opt. Express 17, 7525 (2009).
  • 8E. Canuto, in Proceedings of the American Control Conference Arlinqton 3, 25 (2001).
  • 9M. Marano, G. Galzerano, C. Svelto, and P. Laporta, IEEE Trans. Instrum. Meas. 53, 571 (2004).
  • 10F. Bertinetto, P. Cordiale, G. Galzerano, and E. Bava, IEEE Trans. Instrum. Meas. 50, 490 (2001).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部