期刊文献+

信息闭环结构分析及应用

Analysis and Application of Closed-loop Information Structures
下载PDF
导出
摘要 在现有EMIS数据关系基础上,通过对案例进行分析、聚类,提出了真闭环、准闭环和信息螺旋三种信息闭环结构形式,并针对不同结构形式提出不同检测方法,进而扩大可检测错误类别空间,同时为新系统设计参考。 This paper proposes three kinds of Closed-loop Information Structures by analysing and clustering cases,which are Full Closed-loop Structure,Half Closed-loop Structure and Information Swirl Structure.In addition,the paper gives three detective methods which enlarge the detectable space of information error category and provide reference for designing new IS.
机构地区 军械工程学院 [
出处 《价值工程》 2012年第6期291-292,共2页 Value Engineering
关键词 聚类分析 信息闭环结构 EMIS cluster analysis closed-loop information structures EMIS
  • 相关文献

参考文献6

  • 1郭志懋,周傲英.数据质量和数据清洗研究综述[J].软件学报,2002,13(11):2076-2082. 被引量:268
  • 2宋敏,覃正.国外数据质量管理研究综述[J].情报杂志,2007,26(2):7-9. 被引量:51
  • 3吴建明.ANALYSIS AND DESIGN OF ERROR INFORMATION DETE-CTION SOFTWARE,Kybernetes,Vol.33,No.2,2004:277-285.
  • 4欧渊.武器雷达信息系统病态数据修正方法研究[D].石家庄:军械工程学院硕士论文,2007,3.
  • 5陈骞.全军武器雷达信息系统数据检测方法研究[D].军械工程学院硕士论文.2006.03.
  • 6吴建明.病态信息理论及其在装备保障中的应用[D].石家庄:军械工程学院博士论文,2004,7:58.

二级参考文献57

  • 1Aebi, D., Perrochon, L. Towards improving data quality. In: Sarda, N.L., ed. Proceedings of the International Conference on Information Systems and Management of Data. Delhi, 1993. 273~281.
  • 2Wang, R.Y., Kon, H.B., Madnick, S.E. Data quality requirements analysis and modeling. In: Proceedings of the 9th International Conference on Data Engineering. Vienna: IEEE Computer Society, 1993. 670~677.
  • 3Rahm, E., Do, H.H. Data cleaning: problems and current approaches. IEEE Data Engineering Bulletin, 2000,23(4):3~13.
  • 4Galhardas, H., Florescu, D., Shasha, D., et al. AJAX: an extensible data cleaning tool. In: Chen, W.D., Naughton, J.F., Bernstein, P.A., eds. Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. Texas: ACM, 2000. 590.
  • 5Hernandez, M.A., Stolfo, S.J. Real-World data is dirty: data cleansing and the merge/purge problem. Data Mining and Knowledge Discovery, 1998,2(1):9~37.
  • 6Lee, M.L., Ling, T.W., Lu, H.J., et al. Cleansing data for mining and warehousing. In: Bench-Capon, T., Soda, G., Tjoa, A.M., eds. Database and Expert Systems Applications. Florence: Springer, 1999. 751~760.
  • 7Monge, A.E. Matching algorithm within a duplicate detection system. IEEE Data Engineering Bulletin, 2000,23(4):14~20.
  • 8Monge, A.E., Elkan, C. The field matching problem: algorithms and applications. In: Simoudis, E., Han, J.W., Fayyad, U., eds. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Oregon: AAAI Press, 1996. 267~270.
  • 9Savasere, A., Omiecinski, E., Navathe, S.B. An efficient algorithm for mining association rules in large databases. In: Dayal, U., Gray, P., Nishio, S., eds. Proceedings of the 21st International Conference on Very Large Data Bases. Zurich: Morgan Kaufmann, 1995. 432~444.
  • 10Srikant, R., Agrawal, R. Mining Generalized Association Rules. In: Dayal, U., Gray, P., Nishio, S., eds. Proceedings of the 21st International Conference on Very Large Data Bases. Zurich: Morgan Kaufmann, 1995. 407~419.

共引文献313

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部