期刊文献+

Reduction and deposition of arsenic in copper electrolyte 被引量:3

铜电解液中砷的还原及脱除(英文)
下载PDF
导出
摘要 The influences of temperature, H2SO4 concentration, CuSO4 concentration, reaction time and SO2 flow rate on the reduction of arsenic(V) with SO2 were studied and the deposition behavior of arsenic (III) under the effect of concentration and co-crystallization was investigated in copper electrolyte. The results indicate that reduction rate of arsenic (V) decreases with increasing temperature and H2SO4 concentration, but increases with increasing SO2 flow rate and reaction time, and it can reach 92% under appropriate conditions that reaction temperature is 65 °C, H2SO4 concentration is 203 g/L, CuSO4 concentration is 80 g/L, reaction time is 2 h and SO2 gas flow rate is 200 mL/min. To remove arsenic in the copper electrolyte, arsenic (V) is reduced to trivalence under the appropriate conditions, the copper electrolyte is concentrated till H2SO4 concentration reaches 645 g/L, and then the removal rates of As, Cu, Sb and Bi reach 83.9%, 87.1%, 21.0% and 84.7%. The XRD analysis shows that crystallized product obtained contains As2O3 and CuSO4·5H2O. 探讨了反应温度、H2SO4浓度、CuSO4浓度、反应时间、SO2气流量等因素对SO2还原铜电解液中As(Ⅴ)的影响,并对浓缩共晶作用下铜电解液中As(III)的脱除行为进行了研究。研究表明:As(V)还原率随着反应温度和H2SO4浓度的升高而降低,随着SO2气流量的增大及反应时间的延长而升高。当反应温度为65°C,H2SO4浓度为203g/L,CuSO4浓度为80g/L,SO2流量为200mL/min,反应时间为2h时,铜电解液中As(Ⅴ)还原率为92%;铜电解液中的As(V)还原后,将铜电解液浓缩至H2SO4浓度为645g/L时,As、Cu、Sb、Bi脱除率分别达到83.9%,87.1%,21%,84.7%.XRD分析结果表明:结晶产物中含有As2O3和CuSO4·5H2O等物相。
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第12期2772-2777,共6页 中国有色金属学报(英文版)
关键词 copper electrolyte arsenic (V) REDUCTION sulfur dioxide CONCENTRATION arsenic trioxide 铜电解液 五价砷 还原 二氧化硫 浓缩 三氧化二砷
  • 相关文献

参考文献18

  • 1LINDROOS L, VIRTANEN H. Method for the removal of arsenic from sulfuric acid solution: US 6495024B1 [P]. 2002-12-17.
  • 2ZHENG Ya-jie, LIU Wan-yu, BAI-Meng, ZHANG Chuan-fu. Preparation of arsenic trioxide from arsenic sulfide slag [J]. Journal of Central South University: Science and Technology, 2008, 39(6): 1157-1163. (in Chinese).
  • 3REDMON C L, SUBBANNA S N, SMITH R A. Process for separating arsenic acid from an aqueous mixture comprising sulfuric and arsenic acids: US, 5449503 [P]. 1995-09-12.
  • 4CHANDA M, O' DRISCOLL K F, REMPEL G L. Ligand exchange sorption of arsenate and arsenite anions by chelating resins in ferric ion form [J]. Anionic Polymers, 1998, 8: 85-95.
  • 5HARDER T R, KINGHAM N W. Removal of arsenic from waste water using chemical precipitation methods [J]. Water Environmental Research, 1992, 64(3): 126-131.
  • 6ZHENG Ya-jie. Novel technology of purification of copper electrolyte with chemical reduction: CN 200910227119 [P]. 2009-10-9. (in Chinese).
  • 7PANDA B, DAS S C. Electrowinning of copper from sulfate electrolyte in presence of sulfurous acid [J]. Hydrometallurgy, 2001, 59(1): 55-67.
  • 8SHAO W J, LI X M, CAO Q L, LUO F, LI J M, DU Y Y. Adsorption of arsenate and arsenite anions from aqueous medium byusing metal (III)-loaded amberlite resins [J]. Hydrometallurgy, 2008, 91: 138-143.
  • 9KRISSMANN J, SIDDIQI M A, KLAUS L. Thermodynamics of SO2 absorption in aqueous solutions [J]. Chemical Engineer and Technology, 1998, 21(8): 641-644.
  • 10YANG Xian-wan, HE Jie-ping, YUAN Bao-zhou. Handbook of thermodynamic data calculations in the hi-temp Solution [M]. Beijing: Metallurgical Industry Press, 1983. (in Chinese).

同被引文献30

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部