摘要
证明了线性时不变系统一般不能通过先可控分解,再分别对可控和不可控子系统进行可观分解而得到Kalman 标准型.并讨论了在4 个子空间< A|β> ∩η、< A| β> ∩η⊥、< A| β> ⊥∩η和< A| β> ⊥∩η⊥中取一组基,构造一个化系统为Kalman 标准型的非奇异变换的可能性.最后,证明了在一定条件下存在一个正交变换,可将线性时不变系统化为Kalman
It is shown that for a linear time invariable system,its Kalman canonical form can not be obtained by decomposing the system into its controllable canonical form,and then decomposing its controllable and uncontrollable subsystems into their observable canonical form,respectively.The possibility is discussed to construct a non singular transformation which transforms the system to its Kalman canonical form through choosing a basis in <A|β>∩η,<A|β>∩η ⊥,<A|β> ⊥∩η and <A|β> ⊥∩η ⊥.Finally ,it is proved that the system can be transformed to its Kalman canonical form using an orthogonal transformation under appropriate conditions.
出处
《北京航空航天大学学报》
EI
CAS
CSCD
北大核心
2000年第1期41-44,共4页
Journal of Beijing University of Aeronautics and Astronautics
关键词
线性时不变系统
可控性
Kalman标准分解
linear systems
controllability
observability
Kalman canonical decomposition