摘要
针对目前现有的增量式序列模式挖掘算法没有充分利用先前的挖掘结果,当数据库更新时,需要对数据库进行重复挖掘的问题。本文提出一种基于频繁序列树的增量式序列模式挖掘算法(ISFST),ISFST采用频繁序列树作为序列存储结构,当数据库发生变化时,ISFST算法分两种情况对频繁序列树进行更新操作,通过遍历频繁序列树得到满足最小支持度的所有序列模式。实验结果表明,ISFST算法在时间性能上优于PrefixSpan算法和IncSpan算法。
This paper proposes an incremental mining algorithm of sequential patterns based on frequent sequence tree,called ISFST,in order to solve the problem that the existed incremental mining algorithms can not make full use of the results of the previous mining,when the database is updated,the algorithms need to mine the database once again.ISFST uses the frequent sequence tree as the storage structure of the algorithm.When the database is updated,ISFST is divided into two kinds of situations to update the frequent sequence tree,and finally gets all sequential patterns.Experiments show that ISFST outperforms PrefixSpan and IncSpan in time cost.
出处
《计算机与现代化》
2012年第2期8-10,18,共4页
Computer and Modernization
基金
国家自然科学基金资助项目(61170190)
秦皇岛市科学技术研究与发展计划项目(201001A018)
关键词
数据挖掘
序列模式
增量式挖掘
频繁序列树
投影数据库
剪枝策略
data mining
sequential patterns
incremental mining
frequent sequence tree
projected database
pruning strategy