期刊文献+

基于层次梯度分析的协同数据挖掘算法 被引量:3

Collaborative Data Mining Algorithm Based on Level Grads Analysis
下载PDF
导出
摘要 传统的关联规则挖掘算法易形成大量频繁项目集,不适用于异构环境下海量交通数据的挖掘。为此,提出基于层次梯度且无候选项分析的协同数据挖掘算法。采用挖掘主题数据库和层次梯度构建层次业务数据库,逐层深度挖掘局部频繁项。利用弱化熵模型对频繁项主题数据库进行数据分析,并产生关联规则。实验结果表明,该算法适用于无候选项支持的协同挖掘。 The classic data mining algorithm produces a lot of frequent-item set,which is not applied to the massive data mining in Intelligent Transportation System(ITS).This paper proposes an algorithm based on level grads without candidate items analysis that is used for computing association rules under the heterogeneous environment.It uses the concept of both level grads and mining topic transaction databases forming the level transaction database and mining the local frequent-item.The main-node uses the concept of weakly-entropy to abstract some association rules.Simulation results show that this algorithm has better performance in collaborative mining without candidate support.
出处 《计算机工程》 CAS CSCD 2012年第2期72-74,共3页 Computer Engineering
基金 安徽高校省级自然科学研究基金资助重点项目(KJ2008A104 KJ2009A096) 芜湖市2010年度科技计划基金资助项目
关键词 协同数据挖掘 关联规则 层次梯度 层次业务数据库 collaborative data mining association rule level grads level transaction database
  • 相关文献

参考文献7

  • 1Agrawal R, Srikant R. Fast Algorithms for Mining Association Rules[C] //Proc. of the 20th International Conference on Very Large Databases. [S. l.] : IEEE Press, 1994: 487-499.
  • 2Han Jiawei, Pei Jian, Yin Yiwen. Mining Frequent Patterns Without Candidate Generation[C] //Proc. of ACM SIGMOD International Conference on Management of Data. [S. l.] : ACM Press, 2000.
  • 3Cheung Yin-Ling, Fu Wai-Chee. Mining Frequent Itemsets With- out Support Threshold: With and Without Item Constraints[J]. IEEE Trans. on Knowledge and Data Engineering, 2004, 16(6).
  • 4Bayardo R. Efficiently Mining Long Patterns from Databases[C] // Proc. of ACM SIGMOD International Conference on Management of Data. New York, USA: ACM Press, 1998: 85-93.
  • 5Pei Jian, Han Jiawei, Mortazavi-Asl B, et al. Mining Sequential Patterns by Pattern-growth: The Prefix Span Approach[J]. IEEE Trans. on Data and Knowledge Engineering, 2004, 16(11): 1424-1440.
  • 6Wang Jianyong, Han Jiawei, Li Chun. Frequent Closed Sequence Mining Without Candidate Maintenance[J]. IEEE Trans. on Knowledge and Data Engineering, 2007, 19(8): 1042-1056.
  • 7刘君强,孙晓莹,庄越挺,潘云鹤.挖掘闭合模式的高性能算法[J].软件学报,2004,15(1):94-102. 被引量:19

二级参考文献8

  • 1[1]Pasquier N, Bastide Y, Taouil R, Lakhal L. Discovering frequent closed itemsets for association rules. In: Beeri C, et al, eds. Proc. of the 7th Int'l. Conf. on Database Theory. Jerusalem: Springer-Verlag, 1999. 398~416.
  • 2[2]Agrawal R, Srikant R. Fast algorithms for mining association rules. In: Beeri C, et al, eds. Proc. of the 20th Int'l. Conf. on Very Large Databases. Santiago: Morgan Kaufmann Publishers, 1994. 487~499.
  • 3[3]Pei J, Han J, Mao R. CLOSET: An efficient algorithm for mining frequent closed itemsets. In: Gunopulos D, et al, eds. Proc. of the 2000 ACM SIGMOD Int'l. Workshop on Data Mining and Knowledge Discovery. Dallas: ACM Press, 2000. 21~30.
  • 4[4]Burdick D, Calimlim M, Gehrke J. MAFIA: A maximal frequent itemset algorithm for transactional databases. In: Georgakopoulos D, et al, eds. Proc. of the 17th Int'l. Conf. on Data Engineering. Heidelberg: IEEE Press, 2001. 443~452.
  • 5[5]Zaki MJ, Hsiao CJ. CHARM: An efficient algorithm for closed itemset mining. In: Grossman R, et al, eds. Proc. of the 2nd SIAM Int'l. Conf. on Data Mining. Arlington: SIAM, 2002. 12~28.
  • 6[6]Liu JQ, Pan YH, Wang K, Han J. Mining frequent item sets by opportunistic projection. In: Hand D, et al, eds. Proc. of the 8th ACM SIGKDD Int'l. Conf. on Knowledge Discovery and Data Mining. Alberta: ACM Press, 2002. 229~238.
  • 7[7]Srikant R. Quest synthetic data generation code. San Jose: IBM Almaden Research Center, 1994. http://www.almaden.ibm.com/ software/quest/Resources/index.shtml
  • 8[8]Blake C, Merz C. UCI Repository of machine learning. Irvine: University of California, Department of Information and Computer Science, 1998. http://www.ics.uci.edu/~mlearn/MLRepository.html

共引文献18

同被引文献25

引证文献3

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部