期刊文献+

用模拟退火算法实现语音识别中的矢量量化 被引量:1

ANNEALING VECTOR QUANIZATION IN SPEECH RECOGNITION
下载PDF
导出
摘要 矢量量化在语音识别中有着重要的作用。经典的K均值算法收敛速度快,但极易收敛于局部最佳点;其它的一系列改进算法在克服其局部收敛问题的同时,又显著增加了运算量。本文提出了用模拟退火算法实现语音识别中的矢量量化过程,能够较好地协调运算量和收敛质量之间的矛盾。文章讨论了具体算法,并给出了实验数据。结果表明该方法的综合性能优于现有算法,具有较高的实用价值。 Vector quantization plays an important role in speech recognition. Traditional K-means algorithm owns the advantage of fast convergence, but it is difficult to get the global optimal result. Some modified algorithms have been proposed to overcome this drawback, but they also increase the computation greatly. In this paper, a new algorithm which is based on annealing algorithm is proposed to compromise the contradiction. In the rest of the paper, the details of the algorithm and related experiments are given. The results demonstrate the algorithm is more effective than other methods.
作者 王可 王翠梅
出处 《电子科学学刊》 EI CSCD 2000年第1期19-22,共4页
关键词 矢量量化 语音识别 收敛 退火算法 Vector quantization, Speech recognition, Convergence, Annealing algorithm
  • 相关文献

参考文献2

  • 1马卡尔.语音信号线性预测[M].北京:中国铁道出版社,1987,第1章..
  • 2Huo Q,Pattern Recognition,1995年,28卷,4期,513页

共引文献1

同被引文献10

  • 1孙宏伟,顾明,孙家广.改进的基于主分量分析的码书设计算法[J].计算机辅助设计与图形学学报,2005,17(10):2245-2250. 被引量:5
  • 2向德生,熊岳山,朱更明.基于视觉特性的灰度水印自适应嵌入与提取算法[J].中国图象图形学报,2006,11(7):1026-1035. 被引量:22
  • 3Wang Feng-Hsing, Lakhmi C J, Jeng-Shyang Pan. VQ-based Watermarking Scheme with Genetic Codebook Partition[J]. Journal of Network and Computer Applications, 2007, 3(8): 304-323.
  • 4Luo Bin, Gu Wei, Guo Hui. A VQ Digital Watermark Algorithm Based on T-mixture Models Segmentation[C]//Proc. of IEEE Conference on Neural Networks and Signal Processing. Zhengjiang, China: IEEE Press, 2008: 353-358.
  • 5Shen Furao, Hasegawa O. An Adaptive Incremental LBG for Vector Quantization[J]. Neural Networks, 2006, 19(5): 694-704.
  • 6Li Yuenan, Liu Chunhe, Lu Zheming. Robust Image Watermarking Algorithm Based on Predictive Vector Quantization[C]//Proc. of the 1st International Conference on Innovative Computing, Information and Control. Beijing, China: [s. n.], 2006.
  • 7陈思宝.基于t-混合模型和扩展保局投影的聚类与降维方法研究[D].合肥:安徽大学,2005.
  • 8Lee C H, Chen L H. Fast Closest Codeword Search Algoritfim for Vector Quantization[J]. lEE Processings of Vision, Image and Signal Processing, 1994, 141(3): 143-148.
  • 9Wu Sien-Chu, Chang Chin-Chert. A Novel Digital Image Watermarking Scheme Based on the Vector Quantizafion Technique[J]. Computers & Security, 2005, 24(6): 460-471.
  • 10冯燕,何明一,宋江红,魏江.基于独立成分分析的高光谱图像数据降维及压缩[J].电子与信息学报,2007,29(12):2871-2875. 被引量:38

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部