期刊文献+

ON A SECOND ORDER DISSIPATIVE ODE IN HILBERT SPACE WITH AN INTEGRABLE SOURCE TERM

ON A SECOND ORDER DISSIPATIVE ODE IN HILBERT SPACE WITH AN INTEGRABLE SOURCE TERM
下载PDF
导出
摘要 Asymptotic behaviour of solutions is studied for some second order equations including the model casex(t) +γx(t) + ↓△φb(x(t)) = h(t) with γ 〉 0 and h ∈ L1(O, +∞; H), φ being continuouly differentiable with locally Lipschitz continuous gradient and bounded from below. In particular when φ is convex, all solutions tend to minimize the potential φ as time tends to infinity and the existence of one bounded trajectory implies the weak convergence of all solutions to equilibrium points. Asymptotic behaviour of solutions is studied for some second order equations including the model casex(t) +γx(t) + ↓△φb(x(t)) = h(t) with γ 〉 0 and h ∈ L1(O, +∞; H), φ being continuouly differentiable with locally Lipschitz continuous gradient and bounded from below. In particular when φ is convex, all solutions tend to minimize the potential φ as time tends to infinity and the existence of one bounded trajectory implies the weak convergence of all solutions to equilibrium points.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2012年第1期155-163,共9页 数学物理学报(B辑英文版)
基金 support by the France-Tunisia cooperation under the auspices of the CNRS/DGRSRT agreement No. 08/R 15-06:Systèmes dynamiques et équationsd'évolution Laboratoire Jacques-Louis Lions under the auspices of the Fondation Sciences Mathematiques de Paris
关键词 dissipative dynamical system asymptotic behaviour gradient system heavyball with friction dissipative dynamical system asymptotic behaviour gradient system heavyball with friction
  • 相关文献

参考文献10

  • 1Alvarez F. On the minimizing property of a second order dissipative system in Hilbert space. SIAM J Control Optim, 2000, 38(4): 1102-1119.
  • 2Attouch H, Goudou X, Redont P. The heavy ball with friction method, I. The continuous dynamical system: global exploration of the local minima of a real-valued function asymptotic by analysis of a dissipative dynamical system. Commun Contemp Math, 2000, 2:1-34.
  • 3Baillon J B, Haraux A. Comportement a l'infini pour les equations d'evolution avec forcing periodique. Arch Ration Mech Anal, 1977, 67(1): 101-109.
  • 4Brezis H. Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Mathematics Studies, No 5. Notas de Matematica (50). Amsterdam-London, New York: North-Holland Publishing Co, 1973.
  • 5Bruck R. Asymptotic convergence of nonlinear contraction semigroups in Hilbert space. J Funct Anal, 1975, 18:15-26.
  • 6Chill R, Jendoubi M A. Convergence to steady states in asymptotically autonomous semilinear evolution equations. Nonlinear Anal, 2000, 53(7/8): 1017-1039.
  • 7Haraux A. Equations d'evolution non lineaires: solutions bornees et periodiques. Ann Inst Fourier (Greno- ble), 1978, 28(2): 201 220.
  • 8Haraux A. Nonlinear evolution equations-global behavior of solutions//Lecture Notes in Mathematics, 841. Berlin-New York: Springer-Verlag, 1981.
  • 9Opial Z. Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull Amer Math Soc, 1967, 73:591-597.
  • 10Schatzman M. Le systeme differentiel (d2u/dt2) +θφ (u) ∈ f avec conditions initiales. (English summary) C R Acad Sci Paris A-B, 1977, 284(11): A603-A606.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部