期刊文献+

SBV REGULARITY OF GENUINELY NONLINEAR HYPERBOLIC SYSTEMS OF CONSERVATION LAWS IN ONE SPACE DIMENSION 被引量:1

SBV REGULARITY OF GENUINELY NONLINEAR HYPERBOLIC SYSTEMS OF CONSERVATION LAWS IN ONE SPACE DIMENSION
下载PDF
导出
摘要 The problem of the presence of Cantor part in the derivative of a solution to a hyperbolic system of conservation laws is considered. An overview of the techniques involved in the proof is given, and a collection of related problems concludes the paper. The problem of the presence of Cantor part in the derivative of a solution to a hyperbolic system of conservation laws is considered. An overview of the techniques involved in the proof is given, and a collection of related problems concludes the paper.
机构地区 SISSA
出处 《Acta Mathematica Scientia》 SCIE CSCD 2012年第1期380-388,共9页 数学物理学报(B辑英文版)
关键词 hyperbolic systems conservation laws SBV REGULARITY hyperbolic systems conservation laws SBV regularity
  • 相关文献

参考文献25

  • 1Ambrosio L, De Lellis C. A note on admissible solutions of ld scalar conservation laws and 2d Hamilton- Jacobj equations. J Hyperbolic Diff Equ, 2004, 1(4): 813-826.
  • 2Ancona F, Marson A. A wave-front tracking Mghoritm for n × n nongenuinely nonlinear conservation laws. J Diff Eq, 2001, 177:454-493.
  • 3Ancona Fabio, Marson Andrea. Sharp convergence rate of the Glimm scheme for general nonlinear hyper- bolic systems. Comm Math Phys, 2011, 302(3): 581-630.
  • 4Bianchini S. Stability of solutions for hyperbolic systems with coinciding shocks and rarefactions L∞. SIAM J Math Anal, 2001, 33(4): 959-981.
  • 5Bianchini S. BV solutions to semidiserete schemes. Arch Rat Mech Anal, 2003, 167(1): 1-81.
  • 6Bianchini S. Relaxation limit of the Jin-Xin relaxation model. Comm Pure Appl Math, 2006, 56(5): 688-753.
  • 7Bianchini S, Bressan A. Vanishing viscosity solutions of nonlinear hyperbolic systems. Ann Math, 2005, 161:223-342.
  • 8Bianchini S, Gloyer M. An estimate on the flow generated by monotone operators. Comm Partial Differ Equ, 2011, 36(5): 777-796.
  • 9Bianchini S, De Lellis C, Robyr R. SBV regularity for Hamilton-Jacobi equations in Nn. Arch Ration Mech Anal, 2011, 200(3): 1003-1021.
  • 10Bianchini S, Tonon D. SBV-like regularity for Hamilton-Jacobi equations with a convex Hamiltonian. 2011.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部