期刊文献+

深拖曳多道地震系统阵列几何形态的高精度反演 被引量:3

Accurate Array Geometry Inversion of Deep-Towed Multichannel Seismic System
下载PDF
导出
摘要 在前人工作的基础上,发展了一套针对高分辨率深拖曳多道地震勘探系统(deep-towed acoustics andgeophysics system,DTAGS)阵列几何形态的高精度反演技术。该技术通过拾取的直达波与海面反射波走时共同对反演进行约束,同时考虑了阵列节点深度系统误差以及海水速度波动的影响,采用遗传算法对阵列几何形态控制参数进行同步反演,获得了全局优化的DTAGS阵列几何形态。在北Cascadia边缘陆坡天然气水合物勘探的应用中,采用改进算法处理后的DTAGS地震数据明显提高了成像质量,能够提供更为详实的与天然气水合物相关的海底沉积和构造细节。 An advanced technique to accurately invert the array geometry of the high resolution deep-towed multichannel seismic system DTAGS(deep-towed acoustics and geophysics system) was developed for each shot based on previous studies.This technique used picked arrival times of direct wave and sea-surface reflecting wave as constrain conditions,brought the systematic error of the array nodes' depths and the fluctuation of the seawater velocity into the inversion process,and employed genetic algorithm to simultaneously invert the whole controlling parameters and to achieve globally optimistic DTAGS array geometry.In the application of exploring marine gas hydrate at the North Cascadia margin,the advanced array geometry inversion technique improved the DTAGS imaging quality dramatically,and thus provided full and accurate details of gas-hydrate-related sedimentary and structural features.
作者 孔繁达 何涛
出处 《北京大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第1期71-78,共8页 Acta Scientiarum Naturalium Universitatis Pekinensis
基金 国家自然科学基金(40830423,40904029) 教育部留学回国人员科研启动基金资助
关键词 深拖曳地震系统 阵列几何形态反演 遗传算法 天然气水合物 deep-towed seismic system array geometry inversion genetic algorithm gas hydrate
  • 相关文献

参考文献9

  • 1Rowe M M, Gettrust J F. Fine structure of methane hydratebearing sediments on the Blake Outer Ridge as determined from deep-tow multichannel seismic data. Journal of Geophysical Research, 1993, 98:463-473.
  • 2Gettrust J F, Wood W T, Spychalski S E. High-resolution MCS in deepwater. The Leading Edge, 2004, 23(4): 374-377.
  • 3Gettrust J, Chapman R, Walia R, et al. High resolution seismic studies of deep sea gas hydrate using the DTAGS deep towed multichannel system. EOS - Transactions of the American Geophysical Union, 1999, 80(38): 439-440.
  • 4Chapman N R, Gettrustz J F, Walia R, et al. High-resolution, deep-towed, multichannel seismic survey of deep-sea gas hydrates off western Canada. Geophysics, 2002, 67(4): 1038-1047.
  • 5Wood W T, Gettrust J F, Chapman N R, et al. Decreased stability of methane hydrates in marine sediments owing to phase-boundary roughness. Nature, 2002, 420:656-659.
  • 6Wood W T, Hart P E, Hutchinson D R, et al. Gas and gas hydrate distribution around seafloor seeps in Mississippi Canyon, Northern Gulf of Mexico, using multi-resolution seismic imagery. Marine and Petroleum Geology, 2008, 25:952-959.
  • 7He T, Spence G D, Wood W T, et al. Imaging a hydrate-related cold vent offshore Vancouver Island from deep-towed multichannel seismic data. Geophysics, 2009, 74(2): B23-B36.
  • 8Walia R, Hannay D. Source and receiver geometry corrections for deep towed multichannel seismic data. Geophysical Research Letters, 1999, 26:1993-1996.
  • 9Riedel M, Collett T S, Malone M J. Proceedings of the Integrated Ocean Drilling Program, vol. 311. Washington, DC: Integrated Ocean Drilling Program Management International, Inc, 2006.

同被引文献33

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部